The Emerging role of MALAT1 lncRNA in diabetic nephropathy: based on the review of the literature and bioinformatic analysis
Abstract
Previous studies have found that the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) exerts its biological effects on the progression of diabetic nephropathy by sponging microRNAs and affecting the gene transcription of downstream molecules. In this study, the primary emphasis is placed on the functions that MALAT1 plays in relation to the pathophysiology of diabetic nephropathy as well as the processes that underlie these roles. In addition, the usage of this long noncoding RNA as a possible biomarker or therapeutic target for diabetic nephropathy will be discussed.
1. Piwkowska, A., Ł. Zdrojewski, Z. Heleniak, and A. Dębska-Ślizień, Novel Markers in Diabetic Kidney Disease-Current State and Perspectives. Diagnostics (Basel), 2022. 12(5).
2. Zoccali, C. and F. Mallamaci, Nonproteinuric progressive diabetic kidney disease. Curr Opin Nephrol Hypertens, 2019. 28(3): p. 227-232.
3. Umanath, K. and J.B. Lewis, Update on Diabetic Nephropathy: Core Curriculum 2018. Am J Kidney Dis, 2018. 71(6): p. 884-895.
4. Rabieenia, E., R. Jalali, and M. Mohammadi, Prevalence of nephropathy in patients with type 2 diabetes in Iran: A systematic review and meta-analysis based on geographic information system (GIS). Diabetes Metab Syndr, 2020. 14(5): p. 1543-1550.
5. Nagib, A.M., Y. Elsayed Matter, O.A. Gheith, A.F. Refaie, N.F. Othman, and T. Al-Otaibi, Diabetic Nephropathy Following Posttransplant Diabetes Mellitus. Exp Clin Transplant, 2019. 17(2): p. 138-146.
6. Mazloom, H., S. Alizadeh, P. Pasalar, E.N. Esfahani, and R. Meshkani, Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine, 2015. 76(2): p. 403-408.
7. Satirapoj, B., Review on pathophysiology and treatment of diabetic kidney disease. J Med Assoc Thai, 2010. 93 Suppl 6: p. S228-41.
8. Gu, Y.Y., F.H. Lu, X.R. Huang, L. Zhang, W. Mao, X.Q. Yu, et al., Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol, 2020. 11: p. 583528.
9. Kramer, H.J., Q.D. Nguyen, G. Curhan, and C.Y. Hsu, Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. Jama, 2003. 289(24): p. 3273-7.
10. Chen, Y., K. Lee, Z. Ni, and J.C. He, Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Dis (Basel), 2020. 6(4): p. 215-225.
11. Cao, Q., X.M. Chen, C. Huang, and C.A. Pollock, MicroRNA as novel biomarkers and therapeutic targets in diabetic kidney disease: An update. FASEB Bioadv, 2019. 1(6): p. 375-388.
12. Chen, K., B. Yu, and J. Liao, LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy. Mol Med, 2021. 27(1): p. 71.
13. Ge, Y., J. Wang, D. Wu, Y. Zhou, S. Qiu, J. Chen, et al., lncRNA NR_038323 Suppresses Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-324-3p/DUSP1 Axis. Mol Ther Nucleic Acids, 2019. 17: p. 741-753.
14. Afrookhteh, A., S. Emamgholipour, B. Alipoor, N. Moradi, R. Meshkani, E. Nasli-Esfahani, et al., The Circulating Levels of Complement-C1q/TNF-Related Protein 13 (CTRP13) in Patients with Type 2 Diabetes and its Association with Insulin Resistance. Clinical laboratory, 2017. 63(2): p. 327-333.
15. Samavarchi Tehrani, S., G. Goodarzi, G. Panahi, M. Maniati, and R. Meshkani, Multiple novel functions of circular RNAs in diabetes mellitus. Archives of Physiology and Biochemistry, 2021: p. 1-30.
16. Tehrani, S.S., R. Ebrahimi, A. Al-e-Ahmad, G. Panahi, R. Meshkani, S. Younesi, et al., Competing endogenous RNAs (CeRNAs): novel network in neurological disorders. Current medicinal chemistry, 2021. 28(29): p. 5983-6010.
17. Parvar, S.N., A. Mirzaei, A. Zare, A.H. Doustimotlagh, S. Nikooei, A. Arya, et al., Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol Rep, 2023. 75(1): p. 189-198.
18. Ghorbani, S., R. Mahdavi, B. Alipoor, G. Panahi, E. Nasli Esfahani, F. Razi, et al., Decreased serum microRNA-21 level is associated with obesity in healthy and type 2 diabetic subjects. Arch Physiol Biochem, 2018. 124(4): p. 300-305.
19. Giannella, A., E. Castelblanco, C.F. Zambon, D. Basso, M. Hernandez, E. Ortega, et al., Circulating Small Noncoding RNA Profiling as a Potential Biomarker of Atherosclerotic Plaque Composition in Type 1 Diabetes. Diabetes Care, 2023. 46(3): p. 551-560.
20. Xu, Y.X., S.D. Pu, X. Li, Z.W. Yu, Y.T. Zhang, X.W. Tong, et al., Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res, 2022. 178: p. 106135.
21. Dieter, C., N.E. Lemos, E. Girardi, D.T. Ramos, N.R.F. Corrêa, L.H. Canani, et al., The lncRNA MALAT1 is upregulated in urine of type 1 diabetes mellitus patients with diabetic kidney disease. Genet Mol Biol, 2023. 46(2): p. e20220291.
22. Panahi, G., P. Pasalar, M. Zare, R. Rizzuto, and R. Meshkani, MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PloS one, 2018. 13(4): p. e0196580.
23. Teng, X., X. Chen, H. Xue, Y. Tang, P. Zhang, Q. Kang, et al., NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res, 2020. 48(D1): p. D160-d165.
24. Huang, H.Y., Y.C. Lin, J. Li, K.Y. Huang, S. Shrestha, H.C. Hong, et al., miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res, 2020. 48(D1): p. D148-d154.
25. Sherman, B.T., M. Hao, J. Qiu, X. Jiao, M.W. Baseler, H.C. Lane, et al., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022. 50(W1): p. W216-w221.
26. Kern, F., T. Fehlmann, J. Solomon, L. Schwed, N. Grammes, C. Backes, et al., miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res, 2020. 48(W1): p. W521-w528.
27. Anastasiadou, E., L.S. Jacob, and F.J. Slack, Non-coding RNA networks in cancer. Nat Rev Cancer, 2018. 18(1): p. 5-18.
28. Slack, F.J. and A.M. Chinnaiyan, The Role of Non-coding RNAs in Oncology. Cell, 2019. 179(5): p. 1033-1055.
29. Beermann, J., M.T. Piccoli, J. Viereck, and T. Thum, Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev, 2016. 96(4): p. 1297-325.
30. Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74.
31. Simpson, K., A. Wonnacott, D.J. Fraser, and T. Bowen, MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Curr Diab Rep, 2016. 16(3): p. 35.
32. Hombach, S. and M. Kretz, Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol, 2016. 937: p. 3-17.
33. Toden, S., T.J. Zumwalt, and A. Goel, Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer, 2021. 1875(1): p. 188491.
34. Ren, H. and Q. Wang, Non-Coding RNA and Diabetic Kidney Disease. DNA Cell Biol, 2021. 40(4): p. 553-567.
35. Lin, W., Q. Zhou, C.Q. Wang, L. Zhu, C. Bi, S. Zhang, et al., LncRNAs regulate metabolism in cancer. Int J Biol Sci, 2020. 16(7): p. 1194-1206.
36. Zhu, J., H. Fu, Y. Wu, and X. Zheng, Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci, 2013. 56(10): p. 876-85.
37. Alipoor, B., S. Nikouei, F. Rezaeinejad, S.N. Malakooti-Dehkordi, Z. Sabati, and H. Ghasemi, Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest, 2021. 44(10): p. 2015-2041.
38. Venkatesh, J., M.D. Wasson, J.M. Brown, W. Fernando, and P. Marcato, LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett, 2021. 509: p. 81-88.
39. Olgun, G., O. Sahin, and O. Tastan, Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics, 2018. 19(1): p. 650.
40. Wilusz, J.E., Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta, 2016. 1859(1): p. 128-38.
41. Ji, P., S. Diederichs, W. Wang, S. Böing, R. Metzger, P.M. Schneider, et al., MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003. 22(39): p. 8031-41.
42. Shi, X., M. Sun, Y. Wu, Y. Yao, H. Liu, G. Wu, et al., Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol, 2015. 36(2): p. 503-13.
43. Amodio, N., L. Raimondi, G. Juli, M.A. Stamato, D. Caracciolo, P. Tagliaferri, et al., MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol, 2018. 11(1): p. 63.
44. Valencia, W.M. and H. Florez, How to prevent the microvascular complications of type 2 diabetes beyond glucose control. Bmj, 2017. 356: p. i6505.
45. Chen, Y., H. Zou, H. Lu, H. Xiang, and S. Chen, Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med, 2022. 26(12): p. 3313-3322.
46. Hamidreza Shiri , A.K., Mahboobe Sattari , Samaneh Hemmati , Shadisadat Seyyedebrahimi, Ghodratollah Panahi Evaluation of Antioxidant Potential and Free Radical Scavenging Activity of Methanol Extract from Scrophularia striata. Acta Biochimica Iranica, 2023. 1(2): p. 71-77.
47. Shi, S., L. Song, H. Yu, S. Feng, J. He, Y. Liu, et al., Knockdown of LncRNA-H19 Ameliorates Kidney Fibrosis in Diabetic Mice by Suppressing miR-29a-Mediated EndMT. Front Pharmacol, 2020. 11: p. 586895.
48. Liu, B., L. Qiang, G.D. Wang, Q. Duan, and J. Liu, LncRNA MALAT1 facilities high glucose induced endothelial to mesenchymal transition and fibrosis via targeting miR-145/ZEB2 axis. Eur Rev Med Pharmacol Sci, 2019. 23(8): p. 3478-3486.
49. Zhang, J., T. Jiang, X. Liang, S. Shu, X. Xiang, W. Zhang, et al., lncRNA MALAT1 mediated high glucose-induced HK-2 cell epithelial-to-mesenchymal transition and injury. J Physiol Biochem, 2019. 75(4): p. 443-452.
50. Huang, H., G. Zhang, and Z. Ge, lncRNA MALAT1 Promotes Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-2355-3p/IL6ST Axis. Front Pharmacol, 2021. 12: p. 647650.
51. Liu, C., H. Zhuo, M.Y. Ye, G.X. Huang, M. Fan, and X.Z. Huang, LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J Med Sci, 2020. 36(9): p. 682-691.
52. Zhan, J.F., H.W. Huang, C. Huang, L.L. Hu, and W.W. Xu, Long Non-Coding RNA NEAT1 Regulates Pyroptosis in Diabetic Nephropathy via Mediating the miR-34c/NLRP3 Axis. Kidney Blood Press Res, 2020. 45(4): p. 589-602.
53. Lu, L., Y. Zhang, X. Tan, Y. Merkher, S. Leonov, L. Zhu, et al., Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov, 2022. 8(1): p. 338.
54. Li, X., L. Zeng, C. Cao, C. Lu, W. Lian, J. Han, et al., Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res, 2017. 350(2): p. 327-335.
55. Zuo, Y., L. Chen, X. He, Z. Ye, L. Li, Z. Liu, et al., Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metab Syndr Obes, 2021. 14: p. 1631-1645.
56. Song, P., Y. Chen, Z. Liu, H. Liu, L. Xiao, L. Sun, et al., LncRNA MALAT1 Aggravates Renal Tubular Injury via Activating LIN28A and the Nox4/AMPK/mTOR Signaling Axis in Diabetic Nephropathy. Front Endocrinol (Lausanne), 2022. 13: p. 895360.
57. Yang, Z., D. Song, Y. Wang, and L. Tang, lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res, 2022. 2022: p. 8098001.
58. Xu, L., G. Hu, P. Xing, M. Zhou, and D. Wang, Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci, 2020. 262: p. 118505.
59. Lu, H.Y., G.Y. Wang, J.W. Zhao, and H.T. Jiang, Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J Clin Lab Anal, 2021. 35(8): p. e23881.
60. Abdulle, L.E., J.L. Hao, O.P. Pant, X.F. Liu, D.D. Zhou, Y. Gao, et al., MALAT1 as a Diagnostic and Therapeutic Target in Diabetes-Related Complications: A Promising Long-Noncoding RNA. Int J Med Sci, 2019. 16(4): p. 548-555.
61. Yuan, L.S., H. Du, Q.Y. Ren, R.L. Yang, S.W. Liu, S.Y. Liu, et al., QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. Evid Based Complement Alternat Med, 2023. 2023: p. 3357281.
62. Su, M., W. Zhao, S. Xu, and J. Weng, Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel), 2022. 11(6).
63. Sattar Gorgani-Firuzjaee, R.M., Resveratrol reduces high glucose-induced de-novo lipogenesis through mTOR mediated induction of autophagy in HepG2 cells. Acta Biochimica Iranica, 2023. 1(1): p. 32-39.
64. Hossein Ghahremani, A.B., Kosar Bolandnazar , Solaleh Emamgholipor, Hossein Hosseini , Reza Meshkani Resveratrol as a Potential Protective Compound Against Metabolic Inflammation. Acta Biochimica Iranica, 2023. 1(2): p. 50-64.
65. Wang, B., Y. Wang, K. Xu, Z. Zeng, Z. Xu, D. Yue, et al., Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol, 2021. 46(3): p. 295-304.
66. Fawzy, M.S., B.T. Abu AlSel, E. Al Ageeli, S.A. Al-Qahtani, M.M. Abdel-Daim, and E.A. Toraih, Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem, 2020. 126(2): p. 172-182.
67. Shoeib, H.M., W.A. Keshk, G.M. Al-Ghazaly, A.A. Wagih, and S.A. El-Dardiry, Interplay between long non-coding RNA MALAT1 and pyroptosis in diabetic nephropathy patients. Gene, 2023. 851: p. 146978.
68. Petrica, L., E. Hogea, F. Gadalean, A. Vlad, M. Vlad, V. Dumitrascu, et al., Long noncoding RNAs may impact podocytes and proximal tubule function through modulating miRNAs expression in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus patients. Int J Med Sci, 2021. 18(10): p. 2093-2101.
69. Zhou, L.J., D.W. Yang, L.N. Ou, X.R. Guo, and B.L. Wu, Circulating Expression Level of LncRNA Malat1 in Diabetic Kidney Disease Patients and Its Clinical Significance. J Diabetes Res, 2020. 2020: p. 4729019.
2. Zoccali, C. and F. Mallamaci, Nonproteinuric progressive diabetic kidney disease. Curr Opin Nephrol Hypertens, 2019. 28(3): p. 227-232.
3. Umanath, K. and J.B. Lewis, Update on Diabetic Nephropathy: Core Curriculum 2018. Am J Kidney Dis, 2018. 71(6): p. 884-895.
4. Rabieenia, E., R. Jalali, and M. Mohammadi, Prevalence of nephropathy in patients with type 2 diabetes in Iran: A systematic review and meta-analysis based on geographic information system (GIS). Diabetes Metab Syndr, 2020. 14(5): p. 1543-1550.
5. Nagib, A.M., Y. Elsayed Matter, O.A. Gheith, A.F. Refaie, N.F. Othman, and T. Al-Otaibi, Diabetic Nephropathy Following Posttransplant Diabetes Mellitus. Exp Clin Transplant, 2019. 17(2): p. 138-146.
6. Mazloom, H., S. Alizadeh, P. Pasalar, E.N. Esfahani, and R. Meshkani, Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine, 2015. 76(2): p. 403-408.
7. Satirapoj, B., Review on pathophysiology and treatment of diabetic kidney disease. J Med Assoc Thai, 2010. 93 Suppl 6: p. S228-41.
8. Gu, Y.Y., F.H. Lu, X.R. Huang, L. Zhang, W. Mao, X.Q. Yu, et al., Non-Coding RNAs as Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Front Pharmacol, 2020. 11: p. 583528.
9. Kramer, H.J., Q.D. Nguyen, G. Curhan, and C.Y. Hsu, Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. Jama, 2003. 289(24): p. 3273-7.
10. Chen, Y., K. Lee, Z. Ni, and J.C. He, Diabetic Kidney Disease: Challenges, Advances, and Opportunities. Kidney Dis (Basel), 2020. 6(4): p. 215-225.
11. Cao, Q., X.M. Chen, C. Huang, and C.A. Pollock, MicroRNA as novel biomarkers and therapeutic targets in diabetic kidney disease: An update. FASEB Bioadv, 2019. 1(6): p. 375-388.
12. Chen, K., B. Yu, and J. Liao, LncRNA SOX2OT alleviates mesangial cell proliferation and fibrosis in diabetic nephropathy via Akt/mTOR-mediated autophagy. Mol Med, 2021. 27(1): p. 71.
13. Ge, Y., J. Wang, D. Wu, Y. Zhou, S. Qiu, J. Chen, et al., lncRNA NR_038323 Suppresses Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-324-3p/DUSP1 Axis. Mol Ther Nucleic Acids, 2019. 17: p. 741-753.
14. Afrookhteh, A., S. Emamgholipour, B. Alipoor, N. Moradi, R. Meshkani, E. Nasli-Esfahani, et al., The Circulating Levels of Complement-C1q/TNF-Related Protein 13 (CTRP13) in Patients with Type 2 Diabetes and its Association with Insulin Resistance. Clinical laboratory, 2017. 63(2): p. 327-333.
15. Samavarchi Tehrani, S., G. Goodarzi, G. Panahi, M. Maniati, and R. Meshkani, Multiple novel functions of circular RNAs in diabetes mellitus. Archives of Physiology and Biochemistry, 2021: p. 1-30.
16. Tehrani, S.S., R. Ebrahimi, A. Al-e-Ahmad, G. Panahi, R. Meshkani, S. Younesi, et al., Competing endogenous RNAs (CeRNAs): novel network in neurological disorders. Current medicinal chemistry, 2021. 28(29): p. 5983-6010.
17. Parvar, S.N., A. Mirzaei, A. Zare, A.H. Doustimotlagh, S. Nikooei, A. Arya, et al., Effect of metformin on the long non-coding RNA expression levels in type 2 diabetes: an in vitro and clinical trial study. Pharmacol Rep, 2023. 75(1): p. 189-198.
18. Ghorbani, S., R. Mahdavi, B. Alipoor, G. Panahi, E. Nasli Esfahani, F. Razi, et al., Decreased serum microRNA-21 level is associated with obesity in healthy and type 2 diabetic subjects. Arch Physiol Biochem, 2018. 124(4): p. 300-305.
19. Giannella, A., E. Castelblanco, C.F. Zambon, D. Basso, M. Hernandez, E. Ortega, et al., Circulating Small Noncoding RNA Profiling as a Potential Biomarker of Atherosclerotic Plaque Composition in Type 1 Diabetes. Diabetes Care, 2023. 46(3): p. 551-560.
20. Xu, Y.X., S.D. Pu, X. Li, Z.W. Yu, Y.T. Zhang, X.W. Tong, et al., Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications. Pharmacol Res, 2022. 178: p. 106135.
21. Dieter, C., N.E. Lemos, E. Girardi, D.T. Ramos, N.R.F. Corrêa, L.H. Canani, et al., The lncRNA MALAT1 is upregulated in urine of type 1 diabetes mellitus patients with diabetic kidney disease. Genet Mol Biol, 2023. 46(2): p. e20220291.
22. Panahi, G., P. Pasalar, M. Zare, R. Rizzuto, and R. Meshkani, MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-κB pathways and ROS production in HepG2 cells. PloS one, 2018. 13(4): p. e0196580.
23. Teng, X., X. Chen, H. Xue, Y. Tang, P. Zhang, Q. Kang, et al., NPInter v4.0: an integrated database of ncRNA interactions. Nucleic Acids Res, 2020. 48(D1): p. D160-d165.
24. Huang, H.Y., Y.C. Lin, J. Li, K.Y. Huang, S. Shrestha, H.C. Hong, et al., miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res, 2020. 48(D1): p. D148-d154.
25. Sherman, B.T., M. Hao, J. Qiu, X. Jiao, M.W. Baseler, H.C. Lane, et al., DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 2022. 50(W1): p. W216-w221.
26. Kern, F., T. Fehlmann, J. Solomon, L. Schwed, N. Grammes, C. Backes, et al., miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems. Nucleic Acids Res, 2020. 48(W1): p. W521-w528.
27. Anastasiadou, E., L.S. Jacob, and F.J. Slack, Non-coding RNA networks in cancer. Nat Rev Cancer, 2018. 18(1): p. 5-18.
28. Slack, F.J. and A.M. Chinnaiyan, The Role of Non-coding RNAs in Oncology. Cell, 2019. 179(5): p. 1033-1055.
29. Beermann, J., M.T. Piccoli, J. Viereck, and T. Thum, Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev, 2016. 96(4): p. 1297-325.
30. Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-74.
31. Simpson, K., A. Wonnacott, D.J. Fraser, and T. Bowen, MicroRNAs in Diabetic Nephropathy: From Biomarkers to Therapy. Curr Diab Rep, 2016. 16(3): p. 35.
32. Hombach, S. and M. Kretz, Non-coding RNAs: Classification, Biology and Functioning. Adv Exp Med Biol, 2016. 937: p. 3-17.
33. Toden, S., T.J. Zumwalt, and A. Goel, Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer, 2021. 1875(1): p. 188491.
34. Ren, H. and Q. Wang, Non-Coding RNA and Diabetic Kidney Disease. DNA Cell Biol, 2021. 40(4): p. 553-567.
35. Lin, W., Q. Zhou, C.Q. Wang, L. Zhu, C. Bi, S. Zhang, et al., LncRNAs regulate metabolism in cancer. Int J Biol Sci, 2020. 16(7): p. 1194-1206.
36. Zhu, J., H. Fu, Y. Wu, and X. Zheng, Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci, 2013. 56(10): p. 876-85.
37. Alipoor, B., S. Nikouei, F. Rezaeinejad, S.N. Malakooti-Dehkordi, Z. Sabati, and H. Ghasemi, Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest, 2021. 44(10): p. 2015-2041.
38. Venkatesh, J., M.D. Wasson, J.M. Brown, W. Fernando, and P. Marcato, LncRNA-miRNA axes in breast cancer: Novel points of interaction for strategic attack. Cancer Lett, 2021. 509: p. 81-88.
39. Olgun, G., O. Sahin, and O. Tastan, Discovering lncRNA mediated sponge interactions in breast cancer molecular subtypes. BMC Genomics, 2018. 19(1): p. 650.
40. Wilusz, J.E., Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. Biochim Biophys Acta, 2016. 1859(1): p. 128-38.
41. Ji, P., S. Diederichs, W. Wang, S. Böing, R. Metzger, P.M. Schneider, et al., MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 2003. 22(39): p. 8031-41.
42. Shi, X., M. Sun, Y. Wu, Y. Yao, H. Liu, G. Wu, et al., Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol, 2015. 36(2): p. 503-13.
43. Amodio, N., L. Raimondi, G. Juli, M.A. Stamato, D. Caracciolo, P. Tagliaferri, et al., MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches. J Hematol Oncol, 2018. 11(1): p. 63.
44. Valencia, W.M. and H. Florez, How to prevent the microvascular complications of type 2 diabetes beyond glucose control. Bmj, 2017. 356: p. i6505.
45. Chen, Y., H. Zou, H. Lu, H. Xiang, and S. Chen, Research progress of endothelial-mesenchymal transition in diabetic kidney disease. J Cell Mol Med, 2022. 26(12): p. 3313-3322.
46. Hamidreza Shiri , A.K., Mahboobe Sattari , Samaneh Hemmati , Shadisadat Seyyedebrahimi, Ghodratollah Panahi Evaluation of Antioxidant Potential and Free Radical Scavenging Activity of Methanol Extract from Scrophularia striata. Acta Biochimica Iranica, 2023. 1(2): p. 71-77.
47. Shi, S., L. Song, H. Yu, S. Feng, J. He, Y. Liu, et al., Knockdown of LncRNA-H19 Ameliorates Kidney Fibrosis in Diabetic Mice by Suppressing miR-29a-Mediated EndMT. Front Pharmacol, 2020. 11: p. 586895.
48. Liu, B., L. Qiang, G.D. Wang, Q. Duan, and J. Liu, LncRNA MALAT1 facilities high glucose induced endothelial to mesenchymal transition and fibrosis via targeting miR-145/ZEB2 axis. Eur Rev Med Pharmacol Sci, 2019. 23(8): p. 3478-3486.
49. Zhang, J., T. Jiang, X. Liang, S. Shu, X. Xiang, W. Zhang, et al., lncRNA MALAT1 mediated high glucose-induced HK-2 cell epithelial-to-mesenchymal transition and injury. J Physiol Biochem, 2019. 75(4): p. 443-452.
50. Huang, H., G. Zhang, and Z. Ge, lncRNA MALAT1 Promotes Renal Fibrosis in Diabetic Nephropathy by Targeting the miR-2355-3p/IL6ST Axis. Front Pharmacol, 2021. 12: p. 647650.
51. Liu, C., H. Zhuo, M.Y. Ye, G.X. Huang, M. Fan, and X.Z. Huang, LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J Med Sci, 2020. 36(9): p. 682-691.
52. Zhan, J.F., H.W. Huang, C. Huang, L.L. Hu, and W.W. Xu, Long Non-Coding RNA NEAT1 Regulates Pyroptosis in Diabetic Nephropathy via Mediating the miR-34c/NLRP3 Axis. Kidney Blood Press Res, 2020. 45(4): p. 589-602.
53. Lu, L., Y. Zhang, X. Tan, Y. Merkher, S. Leonov, L. Zhu, et al., Emerging mechanisms of pyroptosis and its therapeutic strategy in cancer. Cell Death Discov, 2022. 8(1): p. 338.
54. Li, X., L. Zeng, C. Cao, C. Lu, W. Lian, J. Han, et al., Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res, 2017. 350(2): p. 327-335.
55. Zuo, Y., L. Chen, X. He, Z. Ye, L. Li, Z. Liu, et al., Atorvastatin Regulates MALAT1/miR-200c/NRF2 Activity to Protect Against Podocyte Pyroptosis Induced by High Glucose. Diabetes Metab Syndr Obes, 2021. 14: p. 1631-1645.
56. Song, P., Y. Chen, Z. Liu, H. Liu, L. Xiao, L. Sun, et al., LncRNA MALAT1 Aggravates Renal Tubular Injury via Activating LIN28A and the Nox4/AMPK/mTOR Signaling Axis in Diabetic Nephropathy. Front Endocrinol (Lausanne), 2022. 13: p. 895360.
57. Yang, Z., D. Song, Y. Wang, and L. Tang, lncRNA MALAT1 Promotes Diabetic Nephropathy Progression via miR-15b-5p/TLR4 Signaling Axis. J Immunol Res, 2022. 2022: p. 8098001.
58. Xu, L., G. Hu, P. Xing, M. Zhou, and D. Wang, Paclitaxel alleviates the sepsis-induced acute kidney injury via lnc-MALAT1/miR-370-3p/HMGB1 axis. Life Sci, 2020. 262: p. 118505.
59. Lu, H.Y., G.Y. Wang, J.W. Zhao, and H.T. Jiang, Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J Clin Lab Anal, 2021. 35(8): p. e23881.
60. Abdulle, L.E., J.L. Hao, O.P. Pant, X.F. Liu, D.D. Zhou, Y. Gao, et al., MALAT1 as a Diagnostic and Therapeutic Target in Diabetes-Related Complications: A Promising Long-Noncoding RNA. Int J Med Sci, 2019. 16(4): p. 548-555.
61. Yuan, L.S., H. Du, Q.Y. Ren, R.L. Yang, S.W. Liu, S.Y. Liu, et al., QiHuangYiShen Granules Modulate the Expression of LncRNA MALAT1 and Attenuate Epithelial-Mesenchymal Transition in Kidney of Diabetic Nephropathy Rats. Evid Based Complement Alternat Med, 2023. 2023: p. 3357281.
62. Su, M., W. Zhao, S. Xu, and J. Weng, Resveratrol in Treating Diabetes and Its Cardiovascular Complications: A Review of Its Mechanisms of Action. Antioxidants (Basel), 2022. 11(6).
63. Sattar Gorgani-Firuzjaee, R.M., Resveratrol reduces high glucose-induced de-novo lipogenesis through mTOR mediated induction of autophagy in HepG2 cells. Acta Biochimica Iranica, 2023. 1(1): p. 32-39.
64. Hossein Ghahremani, A.B., Kosar Bolandnazar , Solaleh Emamgholipor, Hossein Hosseini , Reza Meshkani Resveratrol as a Potential Protective Compound Against Metabolic Inflammation. Acta Biochimica Iranica, 2023. 1(2): p. 50-64.
65. Wang, B., Y. Wang, K. Xu, Z. Zeng, Z. Xu, D. Yue, et al., Resveratrol alleviates sepsis-induced acute kidney injury by deactivating the lncRNA MALAT1/MiR-205 axis. Cent Eur J Immunol, 2021. 46(3): p. 295-304.
66. Fawzy, M.S., B.T. Abu AlSel, E. Al Ageeli, S.A. Al-Qahtani, M.M. Abdel-Daim, and E.A. Toraih, Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem, 2020. 126(2): p. 172-182.
67. Shoeib, H.M., W.A. Keshk, G.M. Al-Ghazaly, A.A. Wagih, and S.A. El-Dardiry, Interplay between long non-coding RNA MALAT1 and pyroptosis in diabetic nephropathy patients. Gene, 2023. 851: p. 146978.
68. Petrica, L., E. Hogea, F. Gadalean, A. Vlad, M. Vlad, V. Dumitrascu, et al., Long noncoding RNAs may impact podocytes and proximal tubule function through modulating miRNAs expression in Early Diabetic Kidney Disease of Type 2 Diabetes Mellitus patients. Int J Med Sci, 2021. 18(10): p. 2093-2101.
69. Zhou, L.J., D.W. Yang, L.N. Ou, X.R. Guo, and B.L. Wu, Circulating Expression Level of LncRNA Malat1 in Diabetic Kidney Disease Patients and Its Clinical Significance. J Diabetes Res, 2020. 2020: p. 4729019.
Files | ||
Issue | Vol 1 No 3 (2023) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/abi.v1i3.14545 | |
Keywords | ||
long Noncoding RNA MALAT1 MicroRNA Diabetic Nephropathy |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Nikooei S, Azadifar E, Alipoor B. The Emerging role of MALAT1 lncRNA in diabetic nephropathy: based on the review of the literature and bioinformatic analysis. ABI. 2023;1(3):105-111.