Original Articles

Effects of the Combination of Curcumin Supplementation and Aerobic Exercise on Lipid Profile and Oxidative Stress in Type 2 Diabetic Wistar Rats

Abstract

Objectives: Dyslipidemia and oxidative stress have been reported to play important roles in the pathogenesis of type 2 diabetes mellitus (T2DM) complications. This study aimed to test the hypothesis whether curcumin supplementation combined with aerobic exercise could prevent dyslipidemia and oxidative stress in a rat model of T2DM.

Methods: Male Wistar rats with nicotinamide-streptozotocin-induced T2DM were divided into four groups including untreated diabetes, diabetes treated with curcumin (30 mg/kg, three times weekly), diabetes treated with aerobic exercise (4-week progressive treadmill training), and a combination group. Also, healthy control groups (untreated, curcumin-treated, and curcumin + aerobic-treated) were studied to determine the side effects of the treatments. Fasting blood sugar (FBS), lipid profiles (triglycerides, total cholesterol, LDL, HDL) and antioxidant enzyme activities (catalase, SOD, GPx) were measured by commercial kits after 4 weeks of treatment protocol.

Results: Diabetic rats had significantly elevated serum levels of FBS, triglycerides, total cholesterol, LDL, and reduced antioxidant activities compared to controls. Curcumin and aerobic exercise alone improved these parameters significantly, but their combination was more effective in reducing FBS, improving lipid profiles, and boosting antioxidant activities.

Conclusion: The combination of curcumin and aerobic exercise has more potential to ameliorate dyslipidemia and oxidative stress in T2DM rats, compared to treatments individually. These findings require further exploration in clinical settings.

1. Mohyadini M, Fahimi A, Bathaie SZ, Yaghooti H. Ranolazine as a therapeutic agent for diabetic cardiomyopathy: reducing endoplasmic reticulum stress and inflammation in type 2 diabetic rat model. BMC Pharmacol Toxicol. 2025;26(1):111. https://doi.org/10.1186/s40360-025-00945-9
2. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003;46(1):3-19. https://doi.org/10.1007/s00125-002-1009-0.
3. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006;38(3):320-3. https://doi.org/10.1038/ng1732.
4. Prasad RB, Groop L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel). 2015;6(1):87-123. https://doi.org/10.3390/genes6010087.
5. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract. 2014;103(2):137-49. https://doi.org/10.1016/j.diabres.2013.11.002.
6. Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Barnighausen T, Vollmer S. The global economic burden of diabetes in adults aged 20-79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 2017;5(6):423-30. https://doi.org/10.1016/S2213-8587(17)30097-9.
7. Hu FB. Globalization of diabetes: the role of diet, lifestyle, and genes. Diabetes Care. 2011;34(6):1249-57. https://doi.org/10.2337/dc11-0442.
8. Yaghooti H, Mohyadini M, Bathaie SZ, Dinarvand N, Mohammadtaghvaei N. Eplerenone alleviates diabetic cardiomyopathy by modulating ER stress, oxidative stress, and NLRP3 inflammasome activation. J Diabetes Metab Disord. 2025;24(2):169. https://doi.org/10.1007/s40200-025-01677-7.
9. Taskinen MR. Diabetic dyslipidaemia: from basic research to clinical practice. Diabetologia. 2003;46(6):733-49. https://doi.org/10.1007/s00125-003-1111-y.
10. Amiri M, Ghaneian MT, Zare-Sakhvidi MJ, Rahmanian M, Nadjarzadeh A, Moghtaderi F, et al. The effect of canola oil compared with sesame and sesame-canola oil on cardio-metabolic biomarkers in patients with type 2 diabetes: Design and research protocol of a randomized, triple-blind, three-way, crossover clinical trial. ARYA Atheroscler. 2019;15(4):168-78. https://doi.org/10.22122/arya.v15i4.1940.
11. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-25. https://doi.org/10.2337/diabetes.54.6.1615.
12. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70. https://doi.org/10.1161/CIRCRESAHA.110.223545.
13. Wei W, Liu Q, Tan Y, Liu L, Li X, Cai L. Oxidative stress, diabetes, and diabetic complications. Hemoglobin. 2009;33(5):370-7. https://doi.org/10.3109/03630260903212175.
14. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. Oxid Med Cell Longev. 2020;2020:8609213. https://doi.org/10.1155/2020/8609213.
15. Low Wang CC, Hess CN, Hiatt WR, Goldfine AB. Clinical Update: Cardiovascular Disease in Diabetes Mellitus: Atherosclerotic Cardiovascular Disease and Heart Failure in Type 2 Diabetes Mellitus - Mechanisms, Management, and Clinical Considerations. Circulation. 2016;133(24):2459-502. https://doi.org/10.1161/CIRCULATIONAHA.116.022194.
16. Rostampour K, Sarebanhassanabadi M, Bidaki R, Seyedhosseini SM, Ahmadi-Vasmehjani A, Mohyadini M, et al. Dietary glycemic and insulin indices in association with sleep quality and duration in patients undergoing angiography. BMC Nutr. 2025;11(1):100. https://doi.org/10.1186/s40795-025-01082-6.
17. Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods. 2017;6(10). https://doi.org/10.3390/foods6100092.
18. Trujillo J, Chirino YI, Molina-Jijon E, Anderica-Romero AC, Tapia E, Pedraza-Chaverri J. Renoprotective effect of the antioxidant curcumin: Recent findings. Redox Biol. 2013;1(1):448-56. https://doi.org/10.1016/j.redox.2013.09.003.
19. Ghosh SS, He H, Wang J, Gehr TW, Ghosh S. Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers. 2018;6(1):e1425085. https://doi.org/10.1080/21688370.2018.1425085.
20. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med. 2014;22(5):851-7. https://doi.org/10.1016/j.ctim.2014.07.006.
21. Syeda USA, Battillo D, Visaria A, Malin SK. The importance of exercise for glycemic control in type 2 diabetes. Am J Med Open. 2023;9:100031. https://doi.org/10.1016/j.ajmo.2023.100031.
22. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93(3):993-1017. https://doi.org/10.1152/physrev.00038.2012.
23. Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: the American College of Sports Medicine and the American Diabetes Association: joint position statement. Diabetes Care. 2010;33(12):e147-67. https://doi.org/10.2337/dc10-9990.
24. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14(2):88-98. https://doi.org/10.1038/nrendo.2017.151.
25. Sadoughi SD. The effect of curcumin on serum levels of adiponectin
and lipid profile in alloxan-induced diabetic rats. J North Khorasan Univ Med Sci. 2017;9(1):101-8. https://doi.org/10.18869/acadpub.jnkums.9.1.101.
26. Asghari KM, Saleh P, Salekzamani Y, Dolatkhah N, Aghamohammadzadeh N, Hashemian M. The effect of curcumin and high-content eicosapentaenoic acid supplementations in type 2 diabetes mellitus patients: a double-blinded randomized clinical trial. Nutr Diabetes. 2024;14(1):168-78. https://doi.org/10.1038/s41387-024-00274-6.
27. Baum L, Cheung SK, Mok VC, Lam LC, Leung VP, Hui E, et al. Curcumin effects on blood lipid profile in a 6-month human study. Pharmacol Res. 2007;56(6):509-14. https://doi.org/10.1016/j.phrs.2007.09.013.
28. Saghebjoo M, Nezamdoost Z, Ahmadabadi F, Saffari I, Hamidi A. The effect of 12 weeks of aerobic training on serum levels high sensitivity C-reactive protein, tumor necrosis factor-alpha, lipid profile and anthropometric characteristics in middle-age women patients with type 2 diabetes. Diabetes Metab Syndr. 2018;12(2):163-8. https://doi.org/10.1016/j.dsx.2017.12.008.
29. Pedersen LR, Olsen RH, Anholm C, Astrup A, Eugen-Olsen J, Fenger M, et al. Effects of 1 year of exercise training versus combined exercise training and weight loss on body composition, low-grade inflammation and lipids in overweight patients with coronary artery disease: a randomized trial. Cardiovasc Diabetol. 2019;18(1):127. https://doi.org/10.1186/s12933-019-0934-x.
30. Hajizadeh moghaddam A, Ahmadalizadeh M, Seyrafi R, Aghagolzadeh M, Khanjani S. Effect of nanocurcumin on oxidative stress and tissue changes of small intestine in diabetic mice. Iran J Diab Metab. 2018;17(6):293-9.
31. Funamoto M, Shimizu K, Sunagawa Y, Katanasaka Y, Miyazaki Y, Kakeya H, et al. Effects of Highly Absorbable Curcumin in Patients with Impaired Glucose Tolerance and Non-Insulin-Dependent Diabetes Mellitus. J Diabetes Res. 2019;2019(1):8208237. https://doi.org/10.1155/2019/8208237.
32. Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2008;57(2):170-6. https://doi.org/10.1016/j.metabol.2007.08.021.
33. Panahi Y, Khalili N, Sahebi E, Namazi S, Reiner Z, Majeed M, Sahebkar A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement Ther Med. 2017;33:1-5. https://doi.org/10.1016/j.ctim.2017.05.006.
Files
IssueVol 3 No 4 (2025) QRcode
SectionOriginal Articles
Keywords
Aerobic exercise Curcumin Diabetes mellitus Lipid profile Oxidative stress.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Gorji A, Ramezani J, Mahinizadeh F, Javaherchian P, Mohyadini M. Effects of the Combination of Curcumin Supplementation and Aerobic Exercise on Lipid Profile and Oxidative Stress in Type 2 Diabetic Wistar Rats. ABI. 2025;3(4):235-241.