Review Article

Modulation of cancer progression by circRNA/ NF-kB axis

Abstract

The newest class of noncoding RNAs with distinctive characteristics is called circular RNAs (circRNAs). These novel RNAs are more stable than other RNAs because they lack 5’ and 3’ ends, instead having their two ends created from pre-mRNA through a process called back-splicing. They are also widely expressed in a variety of species, including viruses, plants, and mammals. There is growing evidence that circRNAs are enriched in the NF-κB pathway. The development of many types of malignancies is associated with aberrant activation of the NF-κB pathway. Recent findings indicate that the circRNA/NF-κB axis controls the expression of genes linked to cancer and, consequently, the growth of tumors. Moreover, circRNAs might interact with the NF-κB pathway to affect biological processes of cells. A comprehensive understanding of the molecular processes behind the involvement of circRNA linked to the NF-κB pathway in the progression of distinct malignancies would provide novel opportunities for cancer therapy. Therefore, this article will briefly discuss the function of circRNAs and the NF-κB pathway in cancer. Next, it will address the crucial role that circRNAs associated with NF-κB play in the progression of different types of malignancies.

1. Zebardast, A., T. Latifi, G. Goodarzi, S.E. Fana, S.S. Tehrani, and Y. Yahyapour, Critical involvement of circular RNAs in virus-associated cancers. Genes & Diseases, 2022.
2. Siegel, R.L., K.D. Miller, N.S. Wagle, and A. Jemal, Cancer statistics, 2023. Ca Cancer J Clin, 2023. 73(1): p. 17-48.
3. Ebrahimpour, A., M. Sarfi, S. Rezatabar, and S.S. Tehrani, Novel insights into the interaction between long non-coding RNAs and microRNAs in glioma. Molecular and cellular biochemistry, 2021. 476: p. 2317-2335.
4. Sung, H., J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, et al., Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2021. 71(3): p. 209-249.
5. Maali, A., M. Sarfi, M. Mirzakhani, G. Goodarzi, H. Maghsoudi, M. Maniati, et al., Peaceful existence of tumor cells with their non-malignant neighbors: the trade of tumor cells with tumor microenvironment. Current Chemical Biology, 2020. 14(4): p. 228-239.
6. Biswas, P.K., S.R. Park, J. An, K.M. Lim, A.A. Dayem, K. Song, et al., The orphan GPR50 receptor regulates the aggressiveness of breast cancer stem-like cells via targeting the NF-kB signaling pathway. International Journal of Molecular Sciences, 2023. 24(3): p. 2804.
7. de Carvalho, T.G., P. Lara, C. Jorquera-Cordero, C.F.S. Aragão, A. de Santana Oliveira, V.B. Garcia, et al., Inhibition of murine colorectal cancer metastasis by targeting M2-TAM through STAT3/NF-kB/AKT signaling using macrophage 1-derived extracellular vesicles loaded with oxaliplatin, retinoic acid, and Libidibia ferrea. Biomedicine & Pharmacotherapy, 2023. 168: p. 115663.
8. Su, T., B. Kong, J. Zhu, and C.A. McHugh, GRAS1 long non-coding RNA binds and stabilizes NF-kB activating protein to protect lung cancer cells from DNA damage. Cancer Research, 2023. 83(7_Supplement): p. 3745-3745.
9. Samavarchi Tehrani, S., F. Esmaeili, M. Shirzad, G. Goodarzi, T. Yousefi, M. Maniati, et al., The critical role of circular RNAs in drug resistance in gastrointestinal cancers. Medical Oncology, 2023. 40(4): p. 116.
10. Zebardast, A., S.S. Tehrani, T. Latifi, and F. Sadeghi, Critical review of Epstein–Barr virus microRNAs relation with EBV‐associated gastric cancer. Journal of cellular physiology, 2021. 236(9): p. 6136-6153.
11. Tehrani, S.S., E. Zaboli, F. Sadeghi, S. Khafri, A. Karimian, M. Rafie, et al., MicroRNA-26a-5p as a potential predictive factor for determining the effectiveness of trastuzumab therapy in HER-2 positive breast cancer patients. BioMedicine, 2021. 11(2): p. 30.
12. Mirhosseini, S.A., M. Sarfi, S. Samavarchi Tehrani, M. Mirazakhani, M. Maniati, and J. Amani, Modulation of cancer cell signaling by long noncoding RNAs. Journal of Cellular Biochemistry, 2019. 120(8): p. 12224-12246.
13. Goodarzi, G., M. Maniati, and D. Qujeq, The role of microRNAs in the healing of diabetic ulcers. International wound journal, 2019. 16(3): p. 621-633.
14. Samavarchi Tehrani, S., G. Goodarzi, G. Panahi, M. Maniati, and R. Meshkani, Multiple novel functions of circular RNAs in diabetes mellitus. Archives of Physiology and Biochemistry, 2021: p. 1-30.
15. Nikooei Sh, A.E., Alipoor B. , The emerging role of MALAT1 lncRNA in diabetic nephropathy: based on the review of the literature and bioinformatic analysis. . Aacta Biochimica Iranica. 1(3): p. 105-111.
16. Molaei, P., M. Savari, A. Mahdavinezhad, R. Najafi, S. Afshar, N. Esfandiari, et al., Highlighting functions of apoptosis and circular RNA’s in colorectal cancer. Pathology-Research and Practice, 2023: p. 154592.
17. Najafi, S., The emerging roles and potential applications of circular RNAs in ovarian cancer: a comprehensive review. Journal of Cancer Research and Clinical Oncology, 2023. 149(5): p. 2211-2234.
18. Hu, F., Y. Peng, X. Fan, X. Zhang, and Z. Jin, Circular RNAs: implications of signaling pathways and bioinformatics in human cancer. Cancer Biology & Medicine, 2023. 20(2): p. 104.
19. He, Z. and Q. Zhu, A Circular RNAs: Emerging roles and new insights in human cancers. Biomedicine & Pharmacotherapy, 2023. 165: p. 115217.
20. Tehrani, S.S., R. Ebrahimi, A. Al-e-Ahmad, G. Panahi, R. Meshkani, S. Younesi, et al., Competing endogenous RNAs (CeRNAs): novel network in neurological disorders. Current medicinal chemistry, 2021. 28(29): p. 5983-6010.
21. Mafi, A., H. Rismanchi, M. Malek Mohammadi, N. Hedayati, S.S. Ghorbanhosseini, S.A. Hosseini, et al., A spotlight on the interplay between Wnt/β-catenin signaling and circular RNAs in hepatocellular carcinoma progression. Frontiers in Oncology, 2023. 13: p. 1224138.
22. Xue, C., G. Li, J. Lu, and L. Li, Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal transduction and targeted therapy, 2021. 6(1): p. 400.
23. Xue, C., G. Li, Q. Zheng, X. Gu, Z. Bao, J. Lu, et al., The functional roles of the circRNA/Wnt axis in cancer. Molecular Cancer, 2022. 21(1): p. 108.
24. Tehrani, S.S., G. Goodarzi, G. Panahi, F. Zamani-Garmsiri, and R. Meshkani, The combination of metformin with morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue browning in high-fat diet-fed mice. Life Sciences, 2023. 323: p. 121706.
25. Zinatizadeh, M.R., B. Schock, G.M. Chalbatani, P.K. Zarandi, S.A. Jalali, and S.R. Miri, The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & diseases, 2021. 8(3): p. 287-297.
26. Ismail A, H., L. Lessard, A.M. Mes‐Masson, and F. Saad, Expression of NF‐κB in prostate cancer lymph node metastases. The Prostate, 2004. 58(3): p. 308-313.
27. Abdullah, M., A.A. Rani, A.W. Sudoyo, D. Makmun, D.R. Handjari, and B.S. Hernowo, Expression of NF-kB and COX2 in colorectal cancer among native Indonesians: the role of inflammation in colorectal carcinogenesis. Acta Med Indones, 2013. 45(3): p. 187-192.
28. Mirzaei, S., A. Zarrabi, F. Hashemi, A. Zabolian, H. Saleki, A. Ranjbar, et al., Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Letters, 2021. 509: p. 63-80.
29. Pourghadamyari H, S.M.E., Eghbali M, Borji H, Dialamy M, Sadeghi A., Inflammatory indices IL-6, TNF-α, CRP, and hs-CRP in candidates for coronary artery bypass graft surgery. Aacta Biochimica Iranica, 2023. 1(3): p. 126-132.
30. Jahangard, R., S.S.S. Ebrahimi, A. Vatannejad, and R. Meshkani, Autophagy protects peripheral blood mononuclear cells from high glucose-induced inflammation and apoptosis. Acta Biochimica Iranica, 2023. 1(1): p. 40-49.
31. Ghahremani H , B.A., Bolandnazar K , Emamgholipor S , Hosseini H, Meshkani R. , Resveratrol as a Potential Protective Compound Against Metabolic Inflammation. Acta Biochimica Iranica, 2023. 1(2): p. 50-64.
32. Karin, M. and Y. Ben-Neriah, Phosphorylation meets ubiquitination: the control of NF-κB activity. Annual review of immunology, 2000. 18(1): p. 621-663.
33. Mazloom, H., S. Alizadeh, P. Pasalar, E.N. Esfahani, and R. Meshkani, Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine, 2015. 76(2): p. 403-408.
34. Jafari-Hafshejani, F., K. Shahanipour, M. Kazemipiur, F. Seif, A. Jafari, M.N. Behbahani, et al., Curcumin Attenuates Oxidative Stress-Induced Effects on TGF-β Expression and NF-κB Signaling in Bovine Aortic Endothelial Cells. Acta Biochimica Iranica, 2023. 1(2): p. 90-95.
35. Zhang, Q., M.J. Lenardo, and D. Baltimore, 30 years of NF-κB: a blossoming of relevance to human pathobiology. Cell, 2017. 168(1): p. 37-57.
36. Gupta, S.C., N. Awasthee, V. Rai, S. Chava, V. Gunda, and K.B. Challagundla, Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 2020. 1873(1): p. 188316.
37. Hoesel, B. and J.A. Schmid, The complexity of NF-κB signaling in inflammation and cancer. Molecular cancer, 2013. 12(1): p. 1-15.
38. Wong, E.T. and V. Tergaonkar, Roles of NF-κB in health and disease: mechanisms and therapeutic potential. Clinical science, 2009. 116(6): p. 451-465.
39. Begalli, F., J. Bennett, D. Capece, D. Verzella, D. D’Andrea, L. Tornatore, et al., Unlocking the NF-κB conundrum: embracing complexity to achieve specificity. Biomedicines, 2017. 5(3): p. 50.
40. Sun, S.-C., The non-canonical NF-κB pathway in immunity and inflammation. Nature reviews immunology, 2017. 17(9): p. 545-558.
41. Gaptulbarova, K., M. Tsyganov, A. Pevzner, M. Ibragimova, and N. Litviakov, NF-kB as a potential prognostic marker and a candidate for targeted therapy of cancer. Experimental oncology, 2020. 42(4): p. 263-269.
42. Zhang, L., A. Chinnathambi, S.A. Alharbi, V.P. Veeraraghavan, S.K. Mohan, and G. Zhang, Punicalagin promotes the apoptosis in human cervical cancer (ME-180) cells through mitochondrial pathway and by inhibiting the NF-kB signaling pathway. Saudi Journal of Biological Sciences, 2020. 27(4): p. 1100-1106.
43. Zhao, G., Y. Yin, and B. Zhao, miR‐140‐5p is negatively correlated with proliferation, invasion, and tumorigenesis in malignant melanoma by targeting SOX4 via the Wnt/β‐catenin and NF‐κB cascades. Journal of Cellular Physiology, 2020. 235(3): p. 2161-2170.
44. Bakshi, H.A., G.A. Quinn, M.M. Nasef, V. Mishra, A.A. Aljabali, M. El-Tanani, et al., Crocin inhibits angiogenesis and metastasis in colon cancer via TNF-α/NF-kB/VEGF pathways. Cells, 2022. 11(9): p. 1502.
45. Zhang, T., C. Ma, Z. Zhang, H. Zhang, and H. Hu, NF‐κB signaling in inflammation and cancer. MedComm, 2021. 2(4): p. 618-653.
46. Zhao, H., L. Wu, G. Yan, Y. Chen, M. Zhou, Y. Wu, et al., Inflammation and tumor progression: signaling pathways and targeted intervention. Signal transduction and targeted therapy, 2021. 6(1): p. 263.
47. Xia, Y., S. Shen, and I.M. Verma, NF-κB, an active player in human cancers. Cancer immunology research, 2014. 2(9): p. 823-830.
48. Li, Y., Z. Lin, B. Chen, S. Chen, Z. Jiang, T. Zhou, et al., Ezrin/NF-kB activation regulates epithelial-mesenchymal transition induced by EGF and promotes metastasis of colorectal cancer. Biomedicine & Pharmacotherapy, 2017. 92: p. 140-148.
49. Rong, L., B. Chen, K. Liu, B. Liu, X. He, J. Liu, et al., CircZDBF2 up-regulates RNF145 by cerna model and recruits CEBPB to accelerate oral squamous cell carcinoma progression via NFκB signaling pathway. Journal of translational medicine, 2022. 20(1): p. 148.
50. Guo, T., J. Zhang, W. Yao, X. Du, Q. Li, L. Huang, et al., CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2019. 1862(10): p. 194420.
51. Ma, S., S. Kong, F. Wang, and S. Ju, CircRNAs: biogenesis, functions, and role in drug-resistant Tumours. Molecular cancer, 2020. 19: p. 1-19.
52. Liu, J., X. Zhang, M. Yan, and H. Li, Emerging role of circular RNAs in cancer. Frontiers in oncology, 2020. 10: p. 663.
53. Yu, Z., Q. Huang, Q. Zhang, H. Wu, and Z. Zhong, CircRNAs open a new era in the study of cardiovascular disease. International Journal of Molecular Medicine, 2021. 47(1): p. 49-64.
54. Li, J., C. Sun, H. Cui, J. Sun, and P. Zhou, Role of circRNAs in neurodevelopment and neurodegenerative diseases. Journal of Molecular Neuroscience, 2021. 71(9): p. 1743-1751.
55. Wu, Y.-L., H.-F. Li, H.-H. Chen, and H. Lin, Emergent roles of circular RNAs in metabolism and metabolic disorders. International journal of molecular sciences, 2022. 23(3): p. 1032.
56. Zheng, X., M. Huang, L. Xing, R. Yang, X. Wang, R. Jiang, et al., The circRNA circSEPT9 mediated by E2F1 and EIF4A3 facilitates the carcinogenesis and development of triple-negative breast cancer. Molecular cancer, 2020. 19: p. 1-22.
57. Zhu, Y.-J., B. Zheng, G.-J. Luo, X.-K. Ma, X.-Y. Lu, X.-M. Lin, et al., Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics, 2019. 9(12): p. 3526.
58. Sinha, T., C. Panigrahi, D. Das, and A. Chandra Panda, Circular RNA translation, a path to hidden proteome. Wiley Interdisciplinary Reviews: RNA, 2022. 13(1): p. e1685.
59. Samavarchi Tehrani, S., S. Gharibi, A. Movahedpour, G. Goodarzi, Z. Jamali, S.H. Khatami, et al., Design and evaluation of scFv-RTX-A as a novel immunotoxin for breast cancer treatment: an in silico approach. Journal of Immunoassay and Immunochemistry, 2021. 42(1): p. 19-33.
60. Dastjerd, N.T., A. Valibeik, S. Rahimi Monfared, G. Goodarzi, M. Moradi Sarabi, F. Hajabdollahi, et al., Gene therapy: A promising approach for breast cancer treatment. Cell biochemistry and function, 2022. 40(1): p. 28-48.
61. Abolghasemi, M., S.S. Tehrani, T. Yousefi, A. Karimian, A. Mahmoodpoor, A. Ghamari, et al., Critical roles of long noncoding RNAs in breast cancer. Journal of cellular physiology, 2020. 235(6): p. 5059-5071.
62. Chen, L. and G. Shan, CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer letters, 2021. 505: p. 49-57.
63. Khongthong, P., A.K. Roseweir, and J. Edwards, The NF-KB pathway and endocrine therapy resistance in breast cancer. Endocrine-related cancer, 2019. 26(6): p. R369-R380.
64. Jiang, J. and X. Cheng, Circular RNA circABCC4 acts as a ceRNA of miR-154-5p to improve cell viability, migration and invasion of breast cancer cells in vitro. Cell Cycle, 2020. 19(20): p. 2653-2661.
65. Wang, S., X. Feng, Y. Wang, Q. Li, and X. Li, Dysregulation of tumour microenvironment driven by circ-TPGS2/miR-7/TRAF6/NF-κB axis facilitates breast cancer cell motility. Autoimmunity, 2021. 54(5): p. 284-293.
66. Xu, Y., S. Zhang, X. Liao, M. Li, S. Chen, X. Li, et al., Circular RNA circIKBKB promotes breast cancer bone metastasis through sustaining NF-κB/bone remodeling factors signaling. Molecular Cancer, 2021. 20(1): p. 1-18.
67. Wang, H., Y. Xiao, L. Wu, and D. Ma, Comprehensive circular RNA profiling reveals the regulatory role of the circRNA-000911/miR-449a pathway in breast carcinogenesis. International Journal of Oncology, 2018. 52(3): p. 743-754.
68. Hu, Y., F. Guo, H. Zhu, X. Tan, X. Zhu, X. Liu, et al., Circular RNA-0001283 suppresses breast cancer proliferation and invasion via MiR-187/HIPK3 axis. Medical science monitor: international medical journal of experimental and clinical research, 2020. 26: p. e921502-1.
69. Zheng, W., X. Wang, Y. Yu, C. Ji, and L. Fang, CircRNF10-DHX15 interaction suppressed breast cancer progression by antagonizing DHX15-NF-κB p65 positive feedback loop. Cellular & Molecular Biology Letters, 2023. 28(1): p. 1-20.
70. Shi, Y. and C. Liu, Circular RNA hsa_circ_0043278 inhibits breast cancer progression via the miR-455-3p/EI24 signalling pathway. BMC cancer, 2021. 21(1): p. 1-14.
71. Zhou, B., Z. Mo, G. Lai, X. Chen, R. Li, R. Wu, et al., Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-. Journal of Experimental & Clinical Cancer Research, 2023. 42(1): p. 48.
72. Bray, F., J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, and A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2018. 68(6): p. 394-424.
73. Huang, H., L. Wei, T. Qin, N. Yang, Z. Li, and Z. Xu, Circular RNA ciRS-7 triggers the migration and invasion of esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB signals. Cancer Biology & Therapy, 2019. 20(1): p. 73-80.
74. Gu, L., Y. Sang, X. Nan, Y. Zheng, F. Liu, L. Meng, et al., circCYP24A1 facilitates esophageal squamous cell carcinoma progression through binding PKM2 to regulate NF-κB-induced CCL5 secretion. Molecular Cancer, 2022. 21(1): p. 1-17.
75. Meng, F., X. Zhang, Y. Wang, J. Lin, Y. Tang, G. Zhang, et al., Hsa_circ_0021727 (circ-CD44) promotes ESCC progression by targeting miR-23b-5p to activate the TAB1/NFκB pathway. Cell Death & Disease, 2023. 14(1): p. 9.
76. Lu, J., Y.h. Wang, X.y. Huang, J.w. Xie, J.b. Wang, J.x. Lin, et al., circ‐CEP85L suppresses the proliferation and invasion of gastric cancer by regulating NFKBIA expression via miR‐942‐5p. Journal of Cellular Physiology, 2020. 235(9): p. 6287-6299.
77. Chen, D., L. Shi, D. Zhong, Y. Nie, Y. Yang, and D. Liu, Hsa_circ_0002019 promotes cell proliferation, migration, and invasion by regulating TNFAIP6/NF-κB signaling in gastric cancer. Genomics, 2023. 115(4): p. 110641.
78. Liu, H., D. Fang, C. Zhang, Z. Zhao, Y. Liu, S. Zhao, et al., Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Molecular Therapy, 2023. 31(6): p. 1739-1755.
79. Mizrahi, J.D., R. Surana, J.W. Valle, and R.T. Shroff, Pancreatic cancer. The Lancet, 2020. 395(10242): p. 2008-2020.
80. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2018. CA: a cancer journal for clinicians, 2018. 68(1): p. 7-30.
81. Qu, S., X. Hao, W. Song, K. Niu, X. Yang, X. Zhang, et al., Circular RNA circRHOT1 is upregulated and promotes cell proliferation and invasion in pancreatic cancer. Epigenomics, 2019. 11(1): p. 53-63.
82. Yang, F., D.-Y. Liu, J.-T. Guo, N. Ge, P. Zhu, X. Liu, et al., Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World journal of gastroenterology, 2017. 23(47): p. 8345.
83. Shen, Q., G. Zheng, Y. Zhou, J. Tong, S. Xu, H. Gao, et al., CircRNA circ_0092314 induces epithelial-mesenchymal transition of pancreatic cancer cells via elevating the expression of S100P by sponging miR-671. Frontiers in Oncology, 2021. 11: p. 675442.
84. Zheng, S., C. Hu, H. Lin, G. Li, R. Xia, X. Zhang, et al., circCUL2 induces an inflammatory CAF phenotype in pancreatic ductal adenocarcinoma via the activation of the MyD88-dependent NF-κB signaling pathway. Journal of Experimental & Clinical Cancer Research, 2022. 41(1): p. 71.
85. Guo, W., L. Zhao, G. Wei, P. Liu, Y. Zhang, and L. Fu, Blocking circ_0013912 suppressed cell growth, migration and invasion of pancreatic ductal adenocarcinoma cells in vitro and in vivo partially through sponging miR-7-5p. Cancer Management and Research, 2020: p. 7291-7303.
86. Han, X., Y. Fang, P. Chen, Y. Xu, W. Zhou, Y. Rong, et al., Upregulated circRNA hsa_circ_0071036 promotes tumourigenesis of pancreatic cancer by sponging miR-489 and predicts unfavorable characteristics and prognosis. Cell Cycle, 2021. 20(4): p. 369-382.
87. Zhang, Y. and Y. Wang, Circular RNAs in hepatocellular carcinoma: emerging functions to clinical significances. Frontiers in oncology, 2021. 11: p. 667428.
88. Li, S., H. Gu, Y. Huang, Q. Peng, R. Zhou, P. Yi, et al., Circular RNA 101368/miR-200a axis modulates the migration of hepatocellular carcinoma through HMGB1/RAGE signaling. Cell Cycle, 2018. 17(19-20): p. 2349-2359.
89. Zhang, N., G. Li, X. Li, L. Xu, and M. Chen, Circ5379-6, a circular form of tumor suppressor PPARα, participates in the inhibition of hepatocellular carcinoma tumorigenesis and metastasis. American Journal of Translational Research, 2018. 10(11): p. 3493.
90. Tu, Q., X. You, J. He, X. Hu, C. Xie, and G. Xu, Circular RNA Circ-0003006 promotes hepatocellular carcinoma proliferation and metastasis through sponging miR-542-3p and regulating HIF-1A. Cancer Management and Research, 2021: p. 7859-7870.
91. Zhou, Y., W. Tang, H. Zhuo, D. Zhu, D. Rong, J. Sun, et al., Cancer-associated fibroblast exosomes promote chemoresistance to cisplatin in hepatocellular carcinoma through circZFR targeting signal transducers and activators of transcription (STAT3)/nuclear factor-kappa B (NF-κB) pathway. Bioengineered, 2022. 13(3): p. 4786-4797.
92. Xi, Y. and P. Xu, Global colorectal cancer burden in 2020 and projections to 2040. Translational oncology, 2021. 14(10): p. 101174.
93. Soleimanifar, H., H.M. Hosseini, S.S. Tehrani, and S.A. Mirhosseini, The anti-adhesion effect of nisin as a robust lantibiotic on the colorectal cancer cells. Advanced Biomedical Research, 2023. 12.
94. Mir, S.M., A. Nezhadi, S.S. Tehrani, and Z. Jamalpoor, The clinical significance of VDR and WIFI downregulation in colorectal cancer tissue. Gene Reports, 2020. 20: p. 100762.
95. Wang, X., Y. Ren, S. Ma, and S. Wang, Circular RNA 0060745, a novel circRNA, promotes colorectal cancer cell proliferation and metastasis through miR-4736 sponging. OncoTargets and therapy, 2020: p. 1941-1951.
96. Wang, J., Y. Zhang, H. Song, H. Yin, T. Jiang, Y. Xu, et al., The circular RNA circSPARC enhances the migration and proliferation of colorectal cancer by regulating the JAK/STAT pathway. Molecular cancer, 2021. 20(1): p. 81.
97. Wu, M., C. Kong, M. Cai, W. Huang, Y. Chen, B. Wang, et al., Hsa_circRNA_002144 promotes growth and metastasis of colorectal cancer through regulating miR-615-5p/LARP1/mTOR pathway. Carcinogenesis, 2021. 42(4): p. 601-610.
98. Chen, J., X. Yang, R. Liu, C. Wen, H. Wang, L. Huang, et al., Circular RNA GLIS2 promotes colorectal cancer cell motility via activation of the NF-κB pathway. Cell Death & Disease, 2020. 11(9): p. 788.
99. Liang, Z.-x., H.-s. Liu, L. Xiong, X. Yang, F.-w. Wang, Z.-w. Zeng, et al., A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Molecular Cancer, 2021. 20(1): p. 1-15.
100. Zheng, M., Classification and pathology of lung cancer. Surgical Oncology Clinics, 2016. 25(3): p. 447-468.
101. Zhang, N., A. Nan, L. Chen, X. Li, Y. Jia, M. Qiu, et al., Circular RNA circSATB2 promotes progression of non-small cell lung cancer cells. Molecular cancer, 2020. 19(1): p. 1-16.
102. Luo, Y.-H., Y.-P. Yang, C.-S. Chien, A.A. Yarmishyn, A.A. Ishola, Y. Chien, et al., Plasma level of circular RNA hsa_circ_0000190 correlates with tumor progression and poor treatment response in advanced lung cancers. Cancers, 2020. 12(7): p. 1740.
103. Ma, Q., B. Huai, Y. Liu, Z. Jia, and Q. Zhao, Circular RNA circ_0020123 promotes non-small cell lung cancer progression through miR-384/TRIM44 axis. Cancer Management and Research, 2021: p. 75-87.
104. Su, C., Y. Han, H. Zhang, Y. Li, L. Yi, X. Wang, et al., CiRS‐7 targeting miR‐7 modulates the progression of non‐small cell lung cancer in a manner dependent on NF‐κB signalling. Journal of Cellular and Molecular Medicine, 2018. 22(6): p. 3097-3107.
105. Zhou, Q. and Y. Sun, Circular RNA cMras suppresses the progression of lung adenocarcinoma through ABHD5/ATGL axis using NF-κB signaling pathway. Cancer biotherapy & radiopharmaceuticals, 2023. 38(5): p. 336-346.
106. Yang, K., Z. Wu, H. Zhang, N. Zhang, W. Wu, Z. Wang, et al., Glioma targeted therapy: insight into future of molecular approaches. Molecular Cancer, 2022. 21(1): p. 1-32.
107. He, J., Z. Huang, M. He, J. Liao, Q. Zhang, S. Wang, et al., Circular RNA MAPK4 (circ-MAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Molecular cancer, 2020. 19(1): p. 1-17.
108. Qiao, J., M. Liu, Q. Tian, and X. Liu, Microarray analysis of circRNAs expression profile in gliomas reveals that circ_0037655 could promote glioma progression by regulating miR-214/PI3K signaling. Life sciences, 2020. 245: p. 117363.
109. Pei, Y., H. Zhang, K. Lu, X. Tang, J. Li, E. Zhang, et al., Circular RNA circRNA_0067934 promotes glioma development by modulating the microRNA miR-7/Wnt/β-catenin axis. Bioengineered, 2022. 13(3): p. 5792-5802.
110. Wang, X., H. Feng, W. Dong, F. Wang, G. Zhang, and J. Wu, Hsa_circ_0008225 inhibits tumorigenesis of glioma via sponging miR-890 and promoting ZMYND11 expression. Journal of Pharmacological Sciences, 2020. 143(2): p. 74-82.
111. Liang, J., X. Li, J. Xu, G.-M. Cai, J.-X. Cao, and B. Zhang, hsa_circ_0072389, hsa_circ_0072386, hsa_circ_0008621, hsa_circ_0072387, and hsa_circ_0072391 aggravate glioma via miR-338-5p/IKBIP. Aging (Albany NY), 2021. 13(23): p. 25213.
112. Jiang, Y., J. Zhao, Y. Liu, J. Hu, L. Gao, H. Wang, et al., CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-α/NF-κB signaling. Cell Death & Disease, 2022. 13(8): p. 697.
113. Yousefi, T., S.M. Mir, J. Asadi, M. Tourani, A. Karimian, M. Maniati, et al., In silico analysis of non-synonymous single nucleotide polymorphism in a human KLK-2 gene associated with prostate cancer. Meta Gene, 2019. 21: p. 100578.
114. Guo, K., J. Shi, Z. Tang, C. Lai, C. Liu, K. Li, et al., Circular RNA circARHGEF28 inhibited the progression of prostate cancer via the miR‐671‐5p/LGALS3BP/NF‐κB axis. Cancer Science, 2023.
115. Chen, W., S. Cen, X. Zhou, T. Yang, K. Wu, L. Zou, et al., Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 axis. Frontiers in cell and developmental biology, 2021. 8: p. 624764.
116. Vitale, S.G., S. Capriglione, G. Zito, S. Lopez, F.A. Gulino, F. Di Guardo, et al., Management of endometrial, ovarian and cervical cancer in the elderly: current approach to a challenging condition. Archives of gynecology and obstetrics, 2019. 299: p. 299-315.
117. Ma, N., X. Li, H. Wei, H. Zhang, and S. Zhang, Circular RNA circNFATC3 acts as a miR-9-5p sponge to promote cervical cancer development by upregulating SDC2. Cellular Oncology, 2021. 44: p. 93-107.
118. Li, Y., S. Lin, and N. An, Hsa_circ_0009910: oncogenic circular RNA targets microRNA-145 in ovarian cancer cells. Cell cycle, 2020. 19(15): p. 1857-1868.
119. Tran, L., J.-F. Xiao, N. Agarwal, J.E. Duex, and D. Theodorescu, Advances in bladder cancer biology and therapy. Nature Reviews Cancer, 2021. 21(2): p. 104-121.
120. Sarabandi, S., H. Effatpanah, N. Sereshki, S. Samavarchi Tehrani, and H. Moradi-Sardareh, 50-bp insertion/deletion polymorphism of the superoxide dismutase-1 is associated with bladder cancer risk in an Iranian population. Nucleosides, Nucleotides & Nucleic Acids, 2022. 41(2): p. 154-165.
121. Zhang, X., X. Liu, Z. Jing, J. Bi, Z. Li, X. Liu, et al., The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Therapy, 2020. 27(3-4): p. 189-202.
Files
IssueVol 1 No 4 (2023) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/abi.v1i4.14717
Keywords
Circular RNA Cancer NF-κB pathway Back-splicing

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ostovar T, Goodarzi G, Samavarchi Tehrani S. Modulation of cancer progression by circRNA/ NF-kB axis. ABI. 2023;1(4):154-165.