Review Article

Adipokines as a link between adipose tissue with inflammation and insulin resistance in cardiometabolic diseases

Abstract

Obesity, a global health crisis, is associated with metabolic disorders and escalating healthcare burdens. This review explores the multifaceted dynamics of obesity, investigating the interplay of genetic, physiological, and environmental factors. Adipose tissue, traditionally regarded for energy storage, now emerges as a crucial contributor to systemic metabolism through the secretion of adipokines. Key adipokines, such as adiponectin, leptin, and the CTRPs superfamily (CTRP1, CTRP3, CTRP9, and CTRP12), are examined for their influence on inflammation, insulin resistance, and atherosclerosis. A critical understanding of the complex interplay between adipokines, inflammation, and insulin resistance is essential for comprehending the intricacies of metabolic dysfunction in obesity. Adipokines emerge as potential therapeutic targets to alleviate inflammation-related pathologies associated with obesity and related disorders. Ongoing research is pivotal to deepen the understanding of adipokine roles, paving the way for innovative therapeutic interventions. This review delves into the role of adipokines in cardiometabolic diseases, particularly emphasizing the intricate links between inflammation and insulin resistance in the context of obesity.

1. Gregg, E.W. and J.E. Shaw, Global Health Effects of Overweight and Obesity. N Engl J Med, 2017. 377(1): p. 80-81.
2. Hamzeh Saberi , G.T., Reza Meshkani The ENPP1 K121Q polymorphism is associated with obesity-related parameters in Iranian normoglycemic male subjects. Acta Biochimica Iranica, 2023. 1(1): p. 20-25.
3. Solaleh Emamgholipour, Z.M., Mohammad Talebpour , Sattar Gorgani-Firuzjaee, Arash Shirvani Homeostatic Model Assessment of β-cell Function May be an Emerging Predictor of Bone Resorption in Metabolically Unhealthy Obesity. Acta Biochimica Iranica, 2023. 1(2): p. 78-82.
4. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet, 2017. 390(10113): p. 2627-2642.
5. Goodarzi, M.O., Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endocrinol, 2018. 6(3): p. 223-236.
6. Alipoor, B., H. Ghaedi, R. Meshkani, M. Omrani, Z. Sharifi, and T. Golmohammadi, The rs2910164 variant is associated with reduced miR-146a expression but not cytokine levels in patients with type 2 diabetes. Journal of endocrinological investigation, 2018. 41: p. 557-566.
7. Alipoor, B., R. Meshkani, H. Ghaedi, Z. Sharifi, G. Panahi, and T. Golmohammadi, Association of miR-146a rs2910164 and miR-149 rs2292832 variants with susceptibility to type 2 diabetes. Clin Lab, 2016. 62(8): p. 1553-1561.
8. Sahar Mazloomi , M.T.G., The Relationship Between Chemerin Gene Polymorphism and the Incidence of Various Diseases. Acta Biochimica Iranica, 2023. 1(2): p. 65-70.
9. Kim, K.Y., E. Lee, and Y. Kim, The Association between Bisphenol A Exposure and Obesity in Children-A Systematic Review with Meta-Analysis. Int J Environ Res Public Health, 2019. 16(14).
10. Finn, E.B., C. Whang, P.H. Hong, S.A. Costa, E.A. Callahan, and T.T. Huang, Strategies to improve the implementation of intensive lifestyle interventions for obesity. Front Public Health, 2023. 11: p. 1202545.
11. Meshkani, R. and S. Vakili, Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clinica chimica acta, 2016. 462: p. 77-89.
12. Zorena, K., O. Jachimowicz-Duda, D. Ślęzak, M. Robakowska, and M. Mrugacz, Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci, 2020. 21(10).
13. Kawai, T., M.V. Autieri, and R. Scalia, Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol, 2021. 320(3): p. C375-c391.
14. Hossein Ghahremani, A.B., Kosar Bolandnazar , Solaleh Emamgholipor, Hossein Hosseini , Reza Meshkani Resveratrol as a Potential Protective Compound Against Metabolic Inflammation. Acta Biochimica Iranica, 2023. 1(2): p. 50-64.
15. Goodarzi, G., S.S. Tehrani, G. Panahi, A. Bahramzadeh, and R. Meshkani, Combination therapy of metformin and p-coumaric acid mitigates metabolic dysfunction associated with obesity and nonalcoholic fatty liver disease in high-fat diet obese C57BL/6 mice. The Journal of Nutritional Biochemistry, 2023. 118: p. 109369.
16. Tseng, Y.-H., Adipose tissue in communication: within and without. Nature Reviews Endocrinology, 2023. 19(2): p. 70-71.
17. Koutaki, D., A. Michos, F. Bacopoulou, and E. Charmandari, The Emerging Role of Sfrp5 and Wnt5a in the Pathogenesis of Obesity: Implications for a Healthy Diet and Lifestyle. Nutrients, 2021. 13(7).
18. Mazloom, H., S. Alizadeh, P. Pasalar, E.N. Esfahani, and R. Meshkani, Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine, 2015. 76(2): p. 403-408.
19. Wilcox, G., Insulin and insulin resistance. Clin Biochem Rev, 2005. 26(2): p. 19-39.
20. Khodabandehloo, H., S. Gorgani-Firuzjaee, G. Panahi, and R. Meshkani, Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Translational Research, 2016. 167(1): p. 228-256.
21. Emamgholipour, S., R. Ebrahimi, A. Bahiraee, F. Niazpour, and R. Meshkani, Acetylation and insulin resistance: a focus on metabolic and mitogenic cascades of insulin signaling. Critical reviews in clinical laboratory sciences, 2020. 57(3): p. 196-214.
22. Boucher, J., A. Kleinridders, and C.R. Kahn, Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol, 2014. 6(1).
23. Chen, L., R. Chen, H. Wang, and F. Liang, Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol, 2015. 2015: p. 508409.
24. Nima Taghizadeh , S.M., Vahid Saeedi, Ladan Haghighi, Mona Nourbakhsh, Mitra Nourbakhsh, Maryam Razzaghy Azar, Association between Steroid Hormones and Insulin Resistance in Patients with Polycystic Ovary Syndrome. Acta Biochimica Iranica, 2023. 1(1): p. 26-31.
25. Nakamura, K., J.J. Fuster, and K. Walsh, Adipokines: A link between obesity and cardiovascular disease. Journal of Cardiology, 2014. 63(4): p. 250-259.
26. Ouchi, N., J.L. Parker, J.J. Lugus, and K. Walsh, Adipokines in inflammation and metabolic disease. Nat Rev Immunol, 2011. 11(2): p. 85-97.
27. Khoramipour, K., K. Chamari, A.A. Hekmatikar, A. Ziyaiyan, S. Taherkhani, N.M. Elguindy, et al., Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients, 2021. 13(4).
28. Nguyen, T.M.D., Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med, 2020. 11: p. 136.
29. Ouchi, N. and K. Walsh, Adiponectin as an anti-inflammatory factor. Clin Chim Acta, 2007. 380(1-2): p. 24-30.
30. Robinson, K., J. Prins, and B. Venkatesh, Clinical review: Adiponectin biology and its role in inflammation and critical illness. Critical Care, 2011. 15(2): p. 221.
31. Wang, X., Q. Chen, H. Pu, Q. Wei, M. Duan, C. Zhang, et al., Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis, 2016. 15: p. 33.
32. Bahreini, M., A.H. Ramezani, F. Shishehbor, and A. Mansoori, The Effect of Omega-3 on Circulating Adiponectin in Adults With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Can J Diabetes, 2018. 42(5): p. 553-559.
33. Fadaei, R., N. Moradi, M. Baratchian, H. Aghajani, M. Malek, A.A. Fazaeli, et al., Association of C1q/TNF-Related Protein-3 (CTRP3) and CTRP13 Serum Levels with Coronary Artery Disease in Subjects with and without Type 2 Diabetes Mellitus. PLoS One, 2016. 11(12): p. e0168773.
34. Moradi, N., R. Fadaei, M.E. Khamseh, A. Nobakht, M.J. Rezaei, F. Aliakbary, et al., Serum levels of CTRP3 in diabetic nephropathy and its relationship with insulin resistance and kidney function. PLoS One, 2019. 14(4): p. e0215617.
35. Mantovani, A., C. Zusi, A. Csermely, G.L. Salvagno, A. Colecchia, G. Lippi, et al., Association between lower plasma adiponectin levels and higher liver stiffness in type 2 diabetic individuals with nonalcoholic fatty liver disease: an observational cross-sectional study. Hormones (Athens), 2022. 21(3): p. 477-486.
36. Atanasova Boshku, A., D. Ivanova Panova, and B. Zafirova Ivanovska, ADIPONECTIN AS A SERUM MARKER OF ADIPOSE TISSUE DYSFUNCTION IN WOMEN WITH POLYCYSTIC OVARY SYNDROME: CORRELATION WITH INDICATORS OF METABOLIC DISTURBANCES. Acta Endocrinol (Buchar), 2018. 14(3): p. 346-352.
37. Obradovic, M., E. Sudar-Milovanovic, S. Soskic, M. Essack, S. Arya, A.J. Stewart, et al., Leptin and Obesity: Role and Clinical Implication. Front Endocrinol (Lausanne), 2021. 12: p. 585887.
38. Perakakis, N., O.M. Farr, and C.S. Mantzoros, Leptin in Leanness and Obesity: JACC State-of-the-Art Review. J Am Coll Cardiol, 2021. 77(6): p. 745-760.
39. Meshkani, R., A. Nasimian, G. Taheripak, M. Zarghooni, M. Rezaei, A. Sadeghi, et al., Association between Leptin G2548A and leptin receptor Q223R polymorphisms with type 2 diabetes in an Iranian population. Clin. Lab, 2016. 62(1-2): p. 89-96.
40. Picó, C., M. Palou, C.A. Pomar, A.M. Rodríguez, and A. Palou, Leptin as a key regulator of the adipose organ. Rev Endocr Metab Disord, 2022. 23(1): p. 13-30.
41. Gorska, E., K. Popko, A. Stelmaszczyk-Emmel, O. Ciepiela, A. Kucharska, and M. Wasik, Leptin receptors. Eur J Med Res, 2010. 15 Suppl 2(Suppl 2): p. 50-4.
42. Saxton, R.A., N.A. Caveney, M.D. Moya-Garzon, K.D. Householder, G.E. Rodriguez, K.A. Burdsall, et al., Structural insights into the mechanism of leptin receptor activation. Nature Communications, 2023. 14(1): p. 1797.
43. Park, H.K. and R.S. Ahima, Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism. Metabolism, 2015. 64(1): p. 24-34.
44. Pérez-Pérez, A., F. Sánchez-Jiménez, T. Vilariño-García, and V. Sánchez-Margalet, Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci, 2020. 21(16).
45. Yang, H., W. Guo, J. Li, S. Cao, J. Zhang, J. Pan, et al., Leptin concentration and risk of coronary heart disease and stroke: A systematic review and meta-analysis. PLoS One, 2017. 12(3): p. e0166360.
46. Chai, S.-B., F. Sun, X.-L. Nie, and J. Wang, Leptin and coronary heart disease: A systematic review and meta-analysis. Atherosclerosis, 2014. 233(1): p. 3-10.
47. Bandaru, P. and A. Shankar, Association between plasma leptin levels and diabetes mellitus. Metab Syndr Relat Disord, 2011. 9(1): p. 19-23.
48. Jiménez-Cortegana, C., A. García-Galey, M. Tami, P. Del Pino, I. Carmona, S. López, et al., Role of Leptin in Non-Alcoholic Fatty Liver Disease. Biomedicines, 2021. 9(7).
49. Si, Y., W. Fan, and L. Sun, A Review of the Relationship Between CTRP Family and Coronary Artery Disease. Curr Atheroscler Rep, 2020. 22(6): p. 22.
50. Zahra Barmoudeh , M.H.S., Hossein Pourghadamyari, Mina Rohani Borj , Amir Hossein Doustimotlagh, Kazem Abbaszadeh-Goudarzi, C1q tumor necrosis factor related proteins (CTRPs) in patients with cardiovascular diseases. Acta Biochimica Iranica, 2023. 1(2): p. 12-19.
51. Afrookhteh, A., S. Emamgholipour, B. Alipoor, N. Moradi, R. Meshkani, E. Nasli-Esfahani, et al., The Circulating Levels of Complement-C1q/TNF-Related Protein 13 (CTRP13) in Patients with Type 2 Diabetes and its Association with Insulin Resistance. Clinical laboratory, 2017. 63(2): p. 327-333.
52. Wang, X.Q., Z.H. Liu, L. Xue, L. Lu, J. Gao, Y. Shen, et al., C1q/TNF-related protein 1 links macrophage lipid metabolism to inflammation and atherosclerosis. Atherosclerosis, 2016. 250: p. 38-45.
53. Lu, L., R.Y. Zhang, X.Q. Wang, Z.H. Liu, Y. Shen, F.H. Ding, et al., C1q/TNF-related protein-1: an adipokine marking and promoting atherosclerosis. Eur Heart J, 2016. 37(22): p. 1762-71.
54. Kim, D. and S.Y. Park, C1q and TNF related protein 1 regulates expression of inflammatory genes in vascular smooth muscle cells. Genes Genomics, 2019. 41(4): p. 397-406.
55. Shen, L., S. Wang, Y. Ling, and W. Liang, Association of C1q/TNF-related protein-1 (CTRP1) serum levels with coronary artery disease. J Int Med Res, 2019. 47(6): p. 2571-2579.
56. Shabani, P., H. Naeimi Khaledi, M. Beigy, S. Emamgholipour, E. Parvaz, H. Poustchi, et al., Circulating level of CTRP1 in patients with nonalcoholic fatty liver disease (NAFLD): is it through insulin resistance? PLoS One, 2015. 10(3): p. e0118650.
57. Hofmann, C., N. Chen, F. Obermeier, G. Paul, C. Büchler, A. Kopp, et al., C1q/TNF-related protein-3 (CTRP-3) is secreted by visceral adipose tissue and exerts antiinflammatory and antifibrotic effects in primary human colonic fibroblasts. Inflamm Bowel Dis, 2011. 17(12): p. 2462-71.
58. Schmid, A., A. Kopp, F. Hanses, T. Karrasch, and A. Schäffler, C1q/TNF-related protein-3 (CTRP-3) attenuates lipopolysaccharide (LPS)-induced systemic inflammation and adipose tissue Erk-1/-2 phosphorylation in mice in vivo. Biochem Biophys Res Commun, 2014. 452(1): p. 8-13.
59. Petersen, P.S., R.M. Wolf, X. Lei, J.M. Peterson, and G.W. Wong, Immunomodulatory roles of CTRP3 in endotoxemia and metabolic stress. Physiol Rep, 2016. 4(5).
60. Zhang, J., B. Zhang, Y. Cheng, and J. Xu, Low serum CTRP3 levels are associated with nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. Cytokine, 2018. 106: p. 131-135.
61. Moradi, N., M. Najafi, T. Sharma, S. Fallah, M. Koushki, J.M. Peterson, et al., Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: A systematic review and meta-analysis. Diabetes Res Clin Pract, 2020. 169: p. 108453.
62. Wang, J., T. Hang, X.M. Cheng, D.M. Li, Q.G. Zhang, L.J. Wang, et al., Associations of C1q/TNF-Related Protein-9 Levels in Serum and Epicardial Adipose Tissue with Coronary Atherosclerosis in Humans. Biomed Res Int, 2015. 2015: p. 971683.
63. Jung, C.H., M.J. Lee, Y.M. Kang, Y.L. Lee, S.M. Seol, H.K. Yoon, et al., C1q/TNF-related protein-9 inhibits cytokine-induced vascular inflammation and leukocyte adhesiveness via AMP-activated protein kinase activation in endothelial cells. Mol Cell Endocrinol, 2016. 419: p. 235-43.
64. Moradi, N., R. Fadaei, S. Emamgholipour, E. Kazemian, G. Panahi, S. Vahedi, et al., Association of circulating CTRP9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PLOS ONE, 2018. 13(1): p. e0192159.
65. Enomoto, T., K. Ohashi, R. Shibata, A. Higuchi, S. Maruyama, Y. Izumiya, et al., Adipolin/C1qdc2/CTRP12 protein functions as an adipokine that improves glucose metabolism. J Biol Chem, 2011. 286(40): p. 34552-8.
66. Fadaei, R., N. Moradi, T. Kazemi, E. Chamani, N. Azdaki, S.A. Moezibady, et al., Decreased serum levels of CTRP12/adipolin in patients with coronary artery disease in relation to inflammatory cytokines and insulin resistance. Cytokine, 2019. 113: p. 326-331.
67. Romacho, T., C.F. Sánchez-Ferrer, and C. Peiró, Visfatin/Nampt: An Adipokine with Cardiovascular Impact. Mediators of Inflammation, 2013. 2013: p. 946427.
68. Abdalla, M.M.I., Role of visfatin in obesity-induced insulin resistance. World J Clin Cases, 2022. 10(30): p. 10840-10851.
69. Heo, Y.J., S.E. Choi, J.Y. Jeon, S.J. Han, D.J. Kim, Y. Kang, et al., Visfatin Induces Inflammation and Insulin Resistance via the NF-κB and STAT3 Signaling Pathways in Hepatocytes. J Diabetes Res, 2019. 2019: p. 4021623.
70. Chang, Y.-H., D.-M. Chang, K.-C. Lin, S.-J. Shin, and Y.-J. Lee, Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a meta-analysis and systemic review. 2011. 27(6): p. 515-527.
71. Jamaluddin, M.S., S.M. Weakley, Q. Yao, and C. Chen, Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol, 2012. 165(3): p. 622-32.
72. Tripathi, D., S. Kant, S. Pandey, and N.Z. Ehtesham, Resistin in metabolism, inflammation, and disease. 2020. 287(15): p. 3141-3149.
73. Siddiqui, K., S. Scaria Joy, and T.P. George, Circulating resistin levels in relation with insulin resistance, inflammatory and endothelial dysfunction markers in patients with type 2 diabetes and impaired fasting glucose. Endocrine and Metabolic Science, 2020. 1(3): p. 100059.
74. Zhang, J.Z., Y. Gao, Y.Y. Zheng, F. Liu, Y.N. Yang, X.M. Li, et al., Increased serum resistin level is associated with coronary heart disease. Oncotarget, 2017. 8(30): p. 50148-50154.
75. Han, D., J. Chen, S. Liu, Z. Zhang, Z. Zhao, W. Jin, et al., Serum Resistin Levels in Adult Patients with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. J Clin Transl Hepatol, 2021. 9(4): p. 484-493.
Files
IssueVol 1 No 3 (2023) QRcode
SectionReview Article(s)
DOI https://doi.org/10.18502/abi.v1i3.14546
Keywords
Adipokine Inflammation Insulin Resistance Cardiovascular Diseases

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Fadaei R. Adipokines as a link between adipose tissue with inflammation and insulin resistance in cardiometabolic diseases. ABI. 2023;1(3):112-118.