Original Articles

Autophagy protects peripheral blood mononuclear cells from high glucose-induced inflammation and apoptosis

Abstract

Objectives: Previous works have linked high concentrations of glucose to cellular toxicity through autophagy modulation. However, the ways in which high glucose (HG) regulates inflammation and apoptosis in peripheral blood mononuclear cells (PBMCs) have not been well characterized.
Methods: In the present study, the role of autophagy in inflammatory responses and apoptotic death of PBMCs exposed to HG was investigated.
Results: 33mM glucose (HG) increased the level of LC3-II at 12h, 24h, and 48h. NH4Cl, a lysosome inhibitor that can block autophagic flux, further promoted LC3-II accumulation in HGtreated cells at 12h, 24h, and 48h. The protein level of p62 significantly decreased from 12h to 48h in HG-treated cells, suggesting an induction of autophagic flux in HG-treated PBMCs. Inhibiting autophagy with chloroquine (CQ) significantly augmented HGinduced PBMCs apoptotic death, as demonstrated by increased cleaved PARP and Cyt C levels and an increased percentage of apoptotic (YO-PRO-1 positive and PI negative) cells. Furthermore, CQ pretreatment exacerbated HG-induced TNF-α, IL-6, and IL-1β mRNA expression in PBMCs.
Conclusion: The data revealed that the autophagy system could be activated in HG-treated PBMCs. The results also indicated that the induction of autophagy might play an adaptive and protective role in HG-induced inflammation and apoptotic death of PBMCs.

1. Khodabandehloo H, Gorgani-Firuzjaee S, Panahi G, Meshkani R. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction. Transl Res. 2016;167(1):228-256.
2. Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta. 2016;462:77-89.
3. Mazloom H, Alizadeh S, Pasalar P, Esfahani EN, Meshkani R. Downregulated microRNA-155 expression in peripheral blood mononuclear cells of type 2 diabetic patients is not correlated with increased inflammatory cytokine production. Cytokine. 2015;76(2):403-408.
4. Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2010;152(6):346-357.
5. Hancu N, Netea M, Baciu I. High glucose concentrations increase the tumor necrosis factor-alpha production capacity by human peripheral blood mononuclear cells. Rom J Physiol Physiol Sci. 1997;35(3-4):325-330.
6. Dasu MR, Jialal I. Free fatty acids in the presence of high glucose amplify monocyte inflammation via Toll-like receptors. Am J Physiol Endocrinol Metab. 2011;300(1):E145-E154.
7. Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol. 2016;428(9):1681-1699.
8. Ward C, Martinez-Lopez N, Otten EG, Carroll B, Maetzel D, Singh R, et al. Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim Biophys Acta Mol Cell Biol Lipids. 2016;1861(4):269-284.
9. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. In: Autophagy in infection and immunity. Springer; 2009:1-32.
10. Demine S, Michel S, Vannuvel K, Wanet A, Renard P, Arnould T. Macroautophagy and cell responses related to mitochondrial dysfunction, lipid metabolism and unconventional secretion of proteins. Cells. 2012;1(2):168-203.
11. Mir SU, George NM, Zahoor L, Harms R, Guinn Z, Sarvetnick N. Inhibition of autophagic turnover in β-cells by fatty acids and glucose leads to apoptotic cell death. J Biol Chem. 2015;290(10):6071-6085.
12. Barlow AD, Thomas DC. Autophagy in Diabetes: β-Cell Dysfunction, Insulin Resistance, and Complications. DNA Cell Biol. 2015;34(4):252-260.
13. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323-335.
14. Netea-Maier RT, Plantinga TS, van de Veerdonk FL, Smit JW, Netea MG. Modulation of inflammation by autophagy: consequences for human disease. Autophagy. 2016;12(2):245-260.
15. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll‐like receptors control autophagy. EMBO J. 2008;27(7):1110-1121.
16. Hartman ML, Kornfeld H. Interactions between naive and infected macrophages reduce Mycobacterium tuberculosis viability. PLoS One. 2011;6(11):e27972.
17. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, et al. Activation of autophagy by inflammatory signals limits IL-1 [beta] production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol. 2012;13(3):255-263.
18. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728-741.
19. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467-478.
20. Jung M, Lee J, Seo HY, Lim JS, Kim EK. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose. PLoS One. 2015;10(1):e0116972.
21. Gou R, Chen J, Sheng S, Wang R, Fang Y, Yang Z, et al. KIM-1 Mediates High Glucose-Induced Autophagy and Apoptosis in Renal Tubular Epithelial Cells. Cell Physiol Biochem. 2016;38(6):2479-2488.
22. Las G, Serada SB, Wikstrom JD, Twig G, Shirihai OS. Fatty acids suppress autophagic turnover in β-cells. J Biol Chem. 2011;286(49):42534-42544.
23. Fujisawa S, Romin Y, Barlas A, Petrovic LM, Turkekul M, Fan N, et al. Evaluation of YO-PRO-1 as an early marker of apoptosis following radiofrequency ablation of colon cancer liver metastases. Cytotechnology. 2014;66(2):259-273.
24. Ertunc ME, Hotamisligil GS. Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res. 2016;57(12):2099-2114.
25. Yin J, Wang Y, Gu L, Fan N, Ma Y, Peng Y. Palmitate induces endoplasmic reticulum stress and autophagy in mature adipocytes: Implications for apoptosis and inflammation. Int J Mol Med. 2015;35(4):932-940.
26. Cai N, Zhao X, Jing Y, Sun K, Jiao S, Chen X, et al. Autophagy protects against palmitate-induced apoptosis in hepatocytes. Cell Biosci. 2014;4(1):1.
27. Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131(6):1149-1163.
28. Ma T, Zhu J, Chen X, Zha D, Singhal PC, Ding G. High glucose induces autophagy in podocytes. Exp Cell Res. 2013;319(6):779-789.
29. Han D, Yang B, Olson LK, Greenstein A, Baek SH, Claycombe KJ, et al. Activation of autophagy through modulation of 5′-AMP-activated protein kinase protects pancreatic β-cells from high glucose. Biochem J. 2010;425(3):541-551.
30. Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Annu Rev Immunol. 2012;30:611-646.
31. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1&bgr; production. Nature. 2008;456(7219):264-268.
32. Li S, Du L, Zhang L, Hu Y, Xia W, Wu J, et al. Cathepsin B contributes to autophagy-related 7 (Atg7)-induced nod-like receptor 3 (NLRP3)-dependent proinflammatory response and aggravates lipotoxicity in rat insulinoma cell line. J Biol Chem. 2013;288(42):30094-30104.
33. Meng Q, Cai D. Defective hypothalamic autophagy directs the central pathogenesis of obesity via the IκB kinase β (IKKβ)/NF-κB pathway. J Biol Chem. 2011;286(37):32324-32332.
34. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222-230.
35. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325-332.
36. Jansen H, Van Essen P, Koenen T, Joosten L, Netea M, Tack C, et al. Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology. 2012;153(12):5866-5874.
37. Esser N, L’homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, et al. Obesity phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia. 2013;56(11):2487-2497.
38. Lee HM, Shin DM, Yuk JM, Shi G, Choi DK, Lee SH, et al. Autophagy negatively regulates keratinocyte inflammatory responses via scaffolding protein p62/SQSTM1. J Immunol. 2011;186(2):1248-1258.
39. Choi SE, Lee SM, Lee YJ, Li LJ, Lee SJ, Lee JH, et al. Protective role of autophagy in palmitate-induced INS-1 β-cell death. Endocrinology. 2009;150(1):126-134.
40. Martino L, Masini M, Novelli M, Beffy P, Bugliani M, Marselli L, et al. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One. 2012;7(5):e36188.
41. Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol. 2008;9(12):1004-1010.
Files
IssueVol 1 No 1 (2023) QRcode
SectionOriginal Articles
DOI https://doi.org/10.18502/abi.v1i1.14064
Keywords
High glucose PBMC autophagy inflammation apoptosis LC3-II

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Jahangard R, Seyyed Ebrahimi SS, Vatannejad A, Meshkani R. Autophagy protects peripheral blood mononuclear cells from high glucose-induced inflammation and apoptosis. ABI. 2023;1(1):40-49.