Review Article

Recent Advances in Nanodelivery Systems for Polyphenols in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): An update

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the most prevalent chronic liver disorder worldwide, closely linked to obesity, insulin resistance, and type 2 diabetes mellitus. Despite its rising global burden, there are currently no approved pharmacological therapies targeting MASLD pathogenesis directly. Polyphenolic compounds have demonstrated promising hepatoprotective, antioxidant, and anti-inflammatory properties in preclinical models; however, their poor stability, limited solubility, and low bioavailability hinder clinical translation. This review summarizes the latest advances in nano-drug delivery systems (NDDSs) designed to enhance the therapeutic potential of polyphenols in MASLD. Various nanocarrier platforms, including inorganic, lipid-based, polymeric, and hybrid nanosystems, are discussed with emphasis on their mechanisms of action, pharmacokinetic advantages, hepatocyte-targeting strategies, and translational challenges. Emerging NDDSs markedly enhance polyphenol pharmacodynamics through enhanced intestinal absorption, controlled release, and targeted hepatic accumulation. Lipid-based carriers (liposomes, solid lipid nanoparticles, nanoemulsions, and nanostructured lipid carriers) demonstrate excellent oral bioavailability and safety, whereas polymeric and inorganic systems offer multifunctional therapeutic synergy by modulating oxidative stress, lipid metabolism, and inflammatory pathways. Recent clinical evidence, including nano-micellar curcumin formulations, suggests translational feasibility and safety in MASLD patients. Nevertheless, long-term biosafety, scalability, and interindividual variability remain key challenges for clinical application. Therefore, polyphenols loaded with nanocarrier systems offer a multifaceted therapeutic approach to address the complex metabolic, inflammatory, and fibrotic processes underlying MASLD. Future research should prioritize clinical validation, mechanistic standardization, and regulatory alignment to enable the transition from preclinical innovation to precision nanomedicine in metabolic liver diseases.

1. Castera L, Friedrich-Rust M, Loomba R. Noninvasive Assessment of Liver Disease in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology. 2019;156(5):1264-81.e4. https://doi.org/10.1053/j.gastro.2018.12.036.
2. Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212-24. https://doi.org/10.1016/s0140-6736(20)32511-3.
3. Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 2019;71(4):793-801. https://doi.org/10.1016/j.jhep.2019.06.021.
4. Younossi ZM, Golabi P, Paik JM, Henry A, Van Dongen C, Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology. 2023;77(4):1335-47. https://doi.org/10.1097/hep.0000000000000004.
5. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67(1):328-57. https://doi.org/10.1002/hep.29367.
6. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021;184(10):2537-64. https://doi.org/10.1016/j.cell.2021.04.015.
7. Khorzoughi RB, Meshkani R. Beneficial effect of metformin, quercetin, and resveratrol combination on high glucose-induced lipogenesis in HepG2 cells. Acta Biochim Iran. 2023. https://doi.org/10.18502/abi.v1i2.14107
8. Teimouri M, Hosseini H, Shabani M, Koushki M, Noorbakhsh F, Meshkani R. Inhibiting miR‐27a and miR‐142‐5p attenuate nonalcoholic fatty liver disease by regulating Nrf2 signaling pathway. IUBMB life. 2020;72(3):361-72. https://doi.org/10.1002/iub.2221
9. Ajmera V, Cepin S, Tesfai K, Hofflich H, Cadman K, Lopez S, et al. A prospective study on the prevalence of NAFLD, advanced fibrosis, cirrhosis and hepatocellular carcinoma in people with type 2 diabetes. J Hepatol. 2023;78(3):471-8. https://doi.org/10.1016/j.jhep.2022.11.010.
10. Maher JJ, Leon P, Ryan JC. Beyond insulin resistance: Innate immunity in nonalcoholic steatohepatitis. Hepatology. 2008;48(2):670-8. https://doi.org/10.1002/hep.22399.
11. Sattari M, Ostadmohammadi K, Hajian H, Karimpour A, Sedghgou F, Sattari M, Panahi G. Fisetin as a Promising Agent in Non-Alcoholic Fatty Liver Disease: Insights into Pathogenic Mechanisms and Therapeutic Potential. Acta Biochim Iran. 2025. https://doi.org/10.18502/abi.v2i4.19106
12. Czaja MJ. JNK regulation of hepatic manifestations of the metabolic syndrome. Trends Endocrinol Metab. 2010;21(12):707-13. https://doi.org/10.1016/j.tem.2010.08.010.
13. Bednarz K, Kowalczyk K, Cwynar M, Czapla D, Czarkowski W, Kmita D, et al. The Role of Glp-1 Receptor Agonists in Insulin Resistance with Concomitant Obesity Treatment in Polycystic Ovary Syndrome. Int J Mol Sci. 2022;23(8). https://doi.org/10.3390/ijms23084334.
14. Welch RD, Billon C, Losby M, Bedia-Diaz G, Fang Y, Avdagic A, et al. Emerging Role of Nuclear Receptors for the Treatment of NAFLD and NASH. Metabolites. 2022;12(3). https://doi.org/10.3390/metabo12030238.
15. Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest. 2006;116(4):1102-9. https://doi.org/10.1172/jci25604.
16. Staels B, Butruille L, Francque S. Treating NASH by targeting peroxisome proliferator-activated receptors. J Hepatol. 2023;79(5):1302-16. https://doi.org/10.1016/j.jhep.2023.07.004.
17. Wu CW, Chu ES, Lam CN, Cheng AS, Lee CW, Wong VW, et al. PPARgamma is essential for protection against nonalcoholic steatohepatitis. Gene Ther. 2010;17(6):790-8. https://doi.org/10.1038/gt.2010.41.
18. Dufour JF, Anstee QM, Bugianesi E, Harrison S, Loomba R, Paradis V, et al. Current therapies and new developments in NASH. Gut. 2022;71(10):2123-34. https://doi.org/10.1136/gutjnl-2021-326874.
19. Sberna AL, Bouillet B, Rouland A, Brindisi MC, Nguyen A, Mouillot T, et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD) and European Association for the Study of Obesity (EASO) clinical practice recommendations for the management of non-alcoholic fatty liver disease: evaluation of their application in people with Type 2 diabetes. Diabet Med. 2018;35(3):368-75. https://doi.org/10.1111/dme.13565.
20. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362(18):1675-85. https://doi.org/10.1056/nejmc1006581.
21. Zeng J, Fan JG, Francque SM. Therapeutic management of metabolic dysfunction associated steatotic liver disease. United European Gastroenterol J. 2024;12(2):177-86. https://doi.org/10.1002/ueg2.12525.
22. Rinella ME, Neuschwander-Tetri BA, Siddiqui MS, Abdelmalek MF, Caldwell S, Barb D, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77(5):1797-835. https://doi.org/10.1097/hep.0000000000000323.
23. Keam SJ. Resmetirom: First Approval. Drugs. 2024;84(6):729-35. https://doi.org/10.1007/s40265-024-02045-0.
24. Mokgalaboni K, Ntamo Y, Ziqubu K, Nyambuya TM, Nkambule BB, Mazibuko-Mbeje SE, et al. Curcumin supplementation improves biomarkers of oxidative stress and inflammation in conditions of obesity, type 2 diabetes and NAFLD: updating the status of clinical evidence. Food Funct. 2021;12(24):12235-49. https://doi.org/10.1039/D1FO02696H.
25. Ghahremani H, Bahramzadeh A, Bolandnazar K, Emamgholipor S, Hosseini H, Meshkani R. Resveratrol as a potential protective compound against metabolic inflammation. Acta Biochim Iran. 2023. https://doi.org/10.18502/abi.v1i2.14101
26. Soleimani AA, Sarajar BO, Aliabadi M, Azmon M, Meshkani R. A review of the therapeutic effects of polyphenols on non-alcoholic fatty liver disease: Focus on oxidative stress. Acta Biochim Iran. 2024. https://doi.org/10.18502/abi.v2i1.16242
27. Niazpour F, Meshkani R. Unlocking the Therapeutic Potential of Autophagy Modulation by Natural Products in Tackling Non-Alcoholic Fatty Liver Disease. Phyt Res. 2025;39(5):2357-73. https://doi.org/10.1002/ptr.8463.
28. Ranneh Y, Bedir AS, Abu-Elsaoud AM, Al Raish S. Polyphenol Intervention Ameliorates Non-Alcoholic Fatty Liver Disease: An Updated Comprehensive Systematic Review. Nutrients. 2024;16(23):4150. https://doi.org/10.3390/nu16234150.
29. Dzah CS. How to increase dietary polyphenol bioavailability: Understanding the roles of modulating factors, lifestyle and gut microbiota. Food and Humanity. 2025;4:100602. https://doi.org/10.1016/j.foohum.2025.100602
30. Wei J, Tan Y, Bai Y, He J, Cao H, Guo J, Su Z. Mesoporous Silicon Nanoparticles with Liver-Targeting and pH-Response-Release Function Are Used for Targeted Drug Delivery in Liver Cancer Treatment. Int J Mol Sci. 2024;25(5):2525. https://doi.org/10.3390/ijms25052525.
31. Gurjar S, Bhat AR, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis. 2025;24(1):5. https://doi.org/10.1186/s12944-024-02396-3.
32. Fathi-Karkan S, Davodabadi F, Mirinejad S, Sargazi S, Amri J, Ulucan-Karnak F, et al. Breaking Barriers in Cancer Treatment: An updated review on Clinical Translation of Novel Nanocarrier Systems. Acta Biochim Iran. 2025. https://doi.org/10.18502/abi.v2i4.19103
33. Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, et al. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release. 2015;219:548-59. https://doi.org/10.1016/j.jconrel.2015.08.039.
34. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16-20. https://doi.org/10.1021/nn900002m.
35. Lan M, Lu W, Zou T, Li L, Liu F, Cai T, Cai Y. Role of inflammatory microenvironment: potential implications for improved breast cancer nano-targeted therapy. Cell Mol Life Sci. 2021;78(5):2105-29. https://doi.org/10.1007/s00018-020-03696-4.
36. Tang R, Li R, Li H, Ma XL, Du P, Yu XY, et al. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS Nano. 2021;15(11):17016-46. https://doi.org/10.1021/acsnano.1c02158.
37. Ahmed ES, Mohamed HE, Farrag MA. Luteolin loaded on zinc oxide nanoparticles ameliorates non-alcoholic fatty liver disease associated with insulin resistance in diabetic rats via regulation of PI3K/AKT/FoxO1 pathway. Int J Immunopathol Pharmacol. 2022;36:3946320221137435. https://doi.org/10.1177/03946320221137435.
38. Abdelmoneim D, Eldomany EB, El-Adl M, Farghali A, El-Sayed G, El-Sherbini ES. Possible protective effect of natural flavanone naringenin-reduced graphene oxide nanosheets on nonalcoholic fatty liver disease. Naunyn Schmiedebergs Arch Pharmacol. 2025;398(4):4071-86. https://doi.org/10.1007/s00210-024-03495-9.
39. Guo X, Huang Z, Chen J, He K, Lin J, Zhang H, Zeng Y. Synergistic delivery of resveratrol and ultrasmall copper-based nanoparticles by aptamer-functionalized ultrasound nanobubbles for the treatment of nonalcoholic fatty liver disease. Front Physiol. 2022;13:950141. https://doi.org/10.3389/fphys.2022.950141.
40. Lei S, Wu Q, Zhang B, Lu M, Xia Y, Li N. Liver-Targeting Nanoparticles GA-MSe@AR Treat NAFLD Through Dual Lipid-Lowering and Antioxidant Efficacy. Int J Nanomedicine. 2025;20:5017-37. https://doi.org/10.2147/ijn.s510577.
41. Tong Y, Yu X, Huang Y, Zhang Z, Mi L, Bao Z. Hepatic-Targeted Nano-enzyme with Resveratrol Loading for Precise Relief of Nonalcoholic Steatohepatitis. ChemMedChem. 2023;18(5):e202200468. https://doi.org/10.1002/cmdc.202200468.
42. Chen C, Jie X, Ou Y, Cao Y, Xu L, Wang Y, Qi R. Nanoliposome improves inhibitory effects of naringenin on nonalcoholic fatty liver disease in mice. Nanomedicine (Lond). 2017;12(15):1791-800. https://doi.org/10.2217/nnm-2017-0119.
43. Liu J, Yuan Y, Gong X, Zhang L, Zhou Q, Wu S, et al. Baicalin and its nanoliposomes ameliorates nonalcoholic fatty liver disease via suppression of TLR4 signaling cascade in mice. Int Immunopharmacol. 2020;80:106208. https://doi.org/10.1016/j.intimp.2020.106208.
44. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnology. 2018;16(1):64. https://doi.org/10.1186/s12951-018-0391-9.
45. Liang Z, Li J, Luo S, Li S, Zhao K, Jiang H, et al. Galactose receptor-mediated hepatic targeting system: engineering of quinary cationic liposomes for resveratrol delivery against hepatic steatosis. RSC Adv. 2025;15(25):19786-801. https://doi.org/10.1039/d5ra02554k.
46. Yan B, Zheng X, Wang Y, Yang J, Zhu X, Qiu M, et al. Liposome-Based Silibinin for Mitigating Nonalcoholic Fatty Liver Disease: Dual Effects via Parenteral and Intestinal Routes. ACS Pharmacol Transl Sci. 2023;6(12):1909-23. https://doi.org/10.1021/acsptsci.3c00210.
47. Abdelmalek DA, Abd-Elhamid BN, Abd Ellah NH, Ismail S. Resveratrol lipid based nanoparticles show a promising outcome on induced non alcoholic fatty liver disease. Bull Pharm Sci. 2023;46(2):715-27. https://doi.org/10.21608/bsfa.2023.327652.
48. Xue M, Zhang L, Yang MX, Zhang W, Li XM, Ou ZM, et al. Berberine-loaded solid lipid nanoparticles are concentrated in the liver and ameliorate hepatosteatosis in db/db mice. Int J Nanomedicine. 2015;10:5049-57. https://doi.org/10.2147/ijn.s84565.
49. Hu R, Liu S, Anwaier G, Wang Q, Shen W, Shen Q, Qi R. Formulation and intestinal absorption of naringenin loaded nanostructured lipid carrier and its inhibitory effects on nonalcoholic fatty liver disease. Nanomedicine. 2021;32:102310. https://doi.org/10.1016/j.nano.2020.102310.
50. Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem. 2022;46(12):e14442. https://doi.org/10.1111/jfbc.14442.
51. Agame-Lagunes B, Esperón-Rojas A, Grube-Pagola P, Alexander-Aguilera A, García H. Curcumin nanoemul-sions on the expression of fatty acid transporter proteins during hepatic steatosis. J Gastroenterol Res Pract. 2024;4(2):1186. https://doi.org/10.52768/jjgastro/1186
52. Agame-Lagunes B, Grube-Pagola P, Garcia-Varela R, Alexander-Aguilera A, Garcia HS. Effect of Curcumin Nanoemulsions Stabilized with MAG and DAG-MCFAs in a Fructose-Induced Hepatic Steatosis Rat Model. pharmaceutics. 2021;13(4):509. https://doi.org/10.3390/pharmaceutics13040509.
53. Dong L, Lou W, Xu C, Wang J. Naringenin cationic lipid-modified nanoparticles mitigate MASLD progression by modulating lipid homeostasis and gut microbiota. J Nanobiotechnology. 2025;23(1):168. https://doi.org/10.1186/s12951-025-03228-x.
54. Chen Y, Jiang Z, Xu J, Zhang J, Sun R, Zhou J, et al. Improving the ameliorative effects of berberine and curcumin combination via dextran-coated bilosomes on non-alcohol fatty liver disease in mice. J Nanobiotechnology. 2021;19(1):230. https://doi.org/10.1186/s12951-021-00979-1.
55. Namdar AB, Ahadi M, Hoseini SM, Vosoghinia H, Rajablou H, Farsi S, et al. Effect of nano-micelle curcumin on hepatic enzymes: a new treatment approach for non-alcoholic fatty liver disease (NAFLD). Avicenna J Phytomed. 2023;13(6):615. https://doi.org/10.22038/ajp.2023.21919.
56. Cai J, Zhu Y, Li X, Deng G, Han Y, Yuan F, et al. Liposomal Silybin Improves Glucose and Lipid Metabolisms in Type 2 Diabetes Mellitus Complicated with Non-Alcoholic Fatty Liver Disease via AMPK/TGF-beta1/Smad Signaling. Tohoku J Exp Med. 2023;261(4):257-65. https://doi.org/10.1620/tjem.2023.j050.
57. Shen B, Zhu Y, Wang F, Deng X, Yue P, Yuan H, Shen C. Fabrication and in vitro/vivo evaluation of quercetin nanocrystals stabilized by glycyrrhizic acid for liver targeted drug delivery. Int J Pharm X. 2024;7:100246. https://doi.org/10.1016/j.ijpx.2024.100246.
58. Li X, Chen XX, Xu Y, Xu XB, Wu WF, Zhao Q, Hu JN. Construction of Glycogen-Based Nanoparticles Loaded with Resveratrol for the Alleviation of High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease. Biomacromolecules. 2022;23(1):409-23. https://doi.org/10.1021/acs.biomac.1c01360.
59. Sitthirach C, Charoensuk L, Pairojkul C, Chaidee A, Intuyod K, Pongking T, et al. Curcumin-loaded nanocomplexes ameliorate the severity of nonalcoholic steatohepatitis in hamsters infected with Opisthorchis viverrini. PLoS One. 2022;17(9):e0275273. https://doi.org/10.1371/journal.pone.0275273.
60. Wan S, Zhang L, Quan Y, Wei K. Resveratrol-loaded PLGA nanoparticles: enhanced stability, solubility and bioactivity of resveratrol for non-alcoholic fatty liver disease therapy. R Soc Open Sci. 2018;5(11):181457. https://doi.org/10.1098/rsos.181457.
61. Teng W, Zhao L, Yang S, Zhang C, Liu M, Luo J, et al. The hepatic-targeted, resveratrol loaded nanoparticles for relief of high fat diet-induced nonalcoholic fatty liver disease. J Control Release. 2019;307:139-49. https://doi.org/10.1016/j.jconrel.2019.06.023.
62. Fan N, Zhao J, Zhao W, Zhang X, Song Q, Shen Y, et al. Celastrol-loaded lactosylated albumin nanoparticles attenuate hepatic steatosis in non-alcoholic fatty liver disease. J Control Release. 2022;347:44-54. https://doi.org/10.1016/j.jconrel.2022.04.034.
63. Pan Y, Zhang Y, Ouyang H, Gong T, Zhang Z, Cao X, Fu Y. Targeted Delivery of Celastrol via Chondroitin Sulfate Derived Hybrid Micelles for Alleviating Symptoms in Nonalcoholic Fatty Liver Disease. ACS Appl Bio Mater. 2023;6(11):4877-93. https://doi.org/10.1021/acsabm.3c00612.
64. Beheshti Namdar A, Ahadi M, Hoseini SM, Vosoghinia H, Rajablou H, Farsi S, et al. Effect of nano-micelle curcumin on hepatic enzymes: A new treatment approach for non-alcoholic fatty liver disease (NAFLD). Avicenna J Phytomed. 2023;13(6):615-25. https://doi.org/10.22038/ajp.2023.21919.
65. Leo CP, Hentschel B, Szucs TD, Leo C. FDA and EMA Approvals of New Breast Cancer Drugs-A Comparative Regulatory Analysis. Cancers (Basel). 2020;12(2). https://doi.org/10.3390/cancers12020437.
66. De Luca R, Blasi L, Alù M, Gristina V, Cicero G. Clinical efficacy of nab-paclitaxel in patients with metastatic pancreatic cancer. Drug Des Devel Ther. 2018;12:1769-75. https://doi.org/10.2147/DDDT.S165851.
Files
IssueVol 3 No 3 (2025) QRcode
SectionReview Article(s)
Keywords
MASLD NAFLD polyphenols nano-drug delivery systems (NDDSs) Phytochemicals

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Ghaffari T, Bahramzadeh A, Meshkani R. Recent Advances in Nanodelivery Systems for Polyphenols in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): An update. ABI. 2025;3(3):133-149.