C1q tumor necrosis factor related proteins (CTRPs) in patients with cardiovascular diseases
Abstract
Cardiovascular diseases (CVDs) are the major cause of death in both developed and developing countries. It is widely accepted that predicting CVDs in the early stages or before the onset of the diseases could be a central goal in the management, prevention, and treatment of these diseases. Adipokines, a large and diverse group of molecules secreted by adipose tissue that affect cardiovascular function, have played a crucial role in the cardiovascular system. C1q/tumor necrosis factor-related protein (CTRP) is a newly discovered family of adipokines that are paralogs of adiponectin. This family includes 15 members (CTRP1 to CTRP15). Recent studies have shown that CTRPs have diverse biological effects on the cardiovascular system. In this review, recent research on the expression of the CTRP gene superfamily in CVDs is examined to assess their potential as new CVD biomarkers. Given the growing data on the roles of CTRPs in the physiology and development of CVDs, this review discusses the role of various types of CTRPs, including CTRP1, CTRP2, CTRP3, CTRP6, CTRP9, CTRP12, and CTRP13 in the management, prevention, and treatment of CVDs.
2. Naghavi M, Wang H, Lozano R, Davis A, Liang X, Zhou M, Vollset SE, Bohensky MA. Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet. 2015;385:117-171.
3. Mokdad AH, Tehrani-Banihashemi A, Moradi-Lakeh M, El Bcheraoui C, Charara R, Khalil I, et al. Burden of cardiovascular diseases in the Eastern Mediterranean Region, 1990-2015: findings from the Global Burden of Disease 2015 study. Int J Public Health. 2018;63(Suppl):137-149.
4. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232-3245.
5. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442.
6. McCarthy CP, van Kimmenade RR, Gaggin HK, Simon ML, Ibrahim NE, Gandhi P, et al. Usefulness of multiple biomarkers for predicting incident major adverse cardiac events in patients who underwent diagnostic coronary angiography (from the catheter sampled blood archive in cardiovascular diseases [CASABLANCA] study). Am J Cardiol. 2017;120(1):25-32.
7. Ravassa S, Delles C, Currie G, Díez J. Biomarkers of Cardiovascular Disease, in Textbook of Vascular Medicine. 2019, Springer:319-330.
8. Moohebati M, Falsoleiman H, Dehghani M, Fazlinezhad A, Daloee MH, Esmaeili H, et al. Serum inflammatory and immune marker response after bare-metal or drug-eluting stent implantation following percutaneous coronary intervention. Angiology. 2011;62(2):184-190.
9. Røysland R. Circulating osteoprotegerin as a biomarker in coronary heart disease and heart failure. Biomarkers Med. 2017;11(8):687-699.
10. 1Biener M, Giannitsis E, Kuhner M, Zelniker T, Mueller-Hennessen M, Vafaie M, et al. Risk prediction in stable cardiovascular disease using a high-sensitivity cardiac troponin T single biomarker strategy compared to the ESC-SCORE. Open Heart. 2018;5(1):e000710.
11. Muhlestein JB, May HT, Galenko O, Knowlton KU, Otvos JD, Connelly MA, et al. GlycA and hsCRP are independent and additive predictors of future cardiovascular events among patients undergoing angiography: the intermountain heart collaborative study. Am Heart J. 2018;202:27-32.
12. Rahsepar AA, Mirzaee A, Moodi F, Moohebati M, Tavallaie S, Eshraghi A, et al. Anti-heat shock protein 27 titers and oxidative stress levels are elevated in patients with valvular heart disease. Angiology. 2012;63(8):609-616.
13. Tavallaie S, Rahsepar AA, Abdi H, Moohebati M, Moodi F, Pourghadamyari H, et al. Association between indices of body mass and antibody titers to heat-shock protein-27 in healthy subjects. Clin Biochem. 2012;45(1-2):144-147.
14. Borato DCK, Parabocz G, Ribas J, Netto H, Erdmann F, Wiecheteck L, et al. Biomarkers in obesity: serum myeloperoxidase and traditional cardiac risk parameters. Exp Clin Endocrinol Diabetes. 2016;124(01):49-54.
15. Zhang Q, Ai Y, Dong H, Wang J, Xu L. Circulating oxidized low‐density lipoprotein is a strong risk factor for the early stage of coronary heart disease. IUBMB Life. 2019;71(2):277-282.
16. van Holten TC, Waanders LF, de Groot PG, Vissers J, Hoefer IE, Pasterkamp G, et al. Circulating biomarkers for predicting cardiovascular disease risk; a systematic review and comprehensive overview of meta-analyses. PLoS One. 2013;8(4):e62080.
17. Vasan RS. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation. 2006;113(19):2335-2362.
18. Han S, Jeong AL, Lee S, Park JS, Buyanravjikh S, Kang W, et al. C1q/TNF-α–related protein 1 (CTRP1) maintains blood pressure under dehydration conditions. Circ Res. 2018;123(5):e5-e19.
19. Schäffler A, Buechler C. CTRP family: linking immunity to metabolism. Trends Endocrinol Metab. 2012;23(4):194-204.
20. Lasser G, Guchhait P, Ellsworth JL, Sheppard P, Lewis K, Bishop P, et al. C1qTNF–related protein-1 (CTRP-1): a vascular wall protein that inhibits collagen-induced platelet aggregation by blocking VWF binding to collagen. Blood. 2006;107(2):423-430.
21. Meadows TA, Bhatt DL. Clinical aspects of platelet inhibitors and thrombus formation. Circ Res. 2007;100(9):1261-1275.
22. Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des. 2009;15(12):1358-1372.
23. Tang JN, Shen DL, Liu CL, Wang XF, Zhang L, Xuan XX, et al. Plasma levels of Clq/TNF-related protein 1 and interleukin 6 in patients with acute coronary syndrome or stable angina pectoris. Am J Med Sci. 2015;349(2):130-136.
24. Chalupova L, Halupova L, Zakovska A, Krejci G, Svestak M. CTRP1: A molecular link between obesity and hypertension. J Mol Biomark Diagn. 2016;7(2):2.
25. Chalupová L, Zakovská A, Adamcová K. Development of a novel enzyme-linked immunosorbent assay (ELISA) for measurement of serum CTRP1: a pilot study: measurement of serum CTRP1 in healthy donors and patients with metabolic syndrome. Clin Biochem. 2013;46(1-2):73-78.
26. Yagmur E, Buergerhausen D, Koek GH, Weiskirchen R, Trautwein C, Koch A, et al. Elevated CTRP1 Plasma Concentration Is Associated with Sepsis and Pre-Existing Type 2 Diabetes Mellitus in Critically Ill Patients. J Clin Med. 2019;8(5):661.
27. Shen Y, Lu L, Liu ZH, Wu F, Zhu JZ, Sun Z, et al. Increased serum level of CTRP1 is associated with low coronary collateralization in stable angina patients with chronic total occlusion. Int J Cardiol. 2014;174(1):203-206.
28. Muendlein A, Leiherer A, Saely C, Ebner J, Geiger K, Brandtner EM, et al. The novel adipokine CTRP1 is significantly associated with the incidence of major adverse cardiovascular events. Atherosclerosis. 2019;286:1-6.
29. Muendlein A, Leiherer A, Saely C, Ebner J, Geiger K, Brandtner EM, et al. Data on the association between CTRP1 and future major adverse cardiovascular events in patients undergoing coronary angiography. Data Brief. 2019;25:104109.
30. Peterson JM, Aja S, Wei Z, Wong GW. CTRP1 protein enhances fatty acid oxidation via AMP-activated protein kinase (AMPK) activation and acetyl-CoA carboxylase (ACC) inhibition. J Biol Chem. 2012;287(2):1576-1587.
31. Xin Y, Lyu X, Wang C, Fu Y, Zhang S, Tian C, et al. Elevated circulating levels of CTRP1, a novel adipokine, in diabetic patients. Endocr J. 2014;61(9):841-847.
32. Kim K-y, Kim HY, Kim JH, Lee CH, Kim DH, Lee YH, et al. Tumor necrosis factor‐α and interleukin‐1β increases CTRP1 expression in adipose tissue. FEBS Lett. 2006;580(16):3953-3960.
33. Shabani P, Khaledi HN, Beigy M, Emamgholipour S, Parvaz E, Poustchi H, et al. Circulating level of CTRP1 in patients with nonalcoholic fatty liver disease (NAFLD): is it through insulin resistance? PLoS One. 2015;10(3):e0123868.
34. Yuasa D, Ohashi K, Shibata R, Takeshita K, Kikuchi R, Takahashi R, et al. Association of circulating C1q/TNF-related protein 1 levels with coronary artery disease in men. PLoS One. 2014;9(6):e99846.
35. Jeon JH, Kim K-y, Kim JH, Baek A, Cho H, Lee YH, et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 2008;22(5):1502-1511.
36. Lu L, Zhang RY, Wang XQ, Liu ZH, Shen Y, Ding FH, et al. C1q/TNF-related protein-1: an adipokine marking and promoting atherosclerosis. Eur Heart J. 2016;37(22):1762-1771.
37. Francis GS, Tang WW. Pathophysiology of congestive heart failure. Rev Cardiovasc Med. 2019;4(S2):14-20.
38. Yang Y, Liu S, Zhang RY, Luo H, Chen L, He WF, et al. Association between C1q/TNF-related protein-1 levels in human plasma and epicardial adipose tissues and congestive heart failure. Cell Physiol Biochem. 2017;42(5):2130-2143.
39. Han S, Kim JD, Lee S, Jeong AL, Park JS, Yong HJ, et al. Circulating CTRP1 levels in type 2 diabetes and their association with FGF21. Int J Endocrinol. 2016;2016:1-7.
40. Zhang Y, Liu C, Liu J, Guo R, Yan Z, Liu W, et al. Implications of C1q/TNF-related protein superfamily in patients with coronary artery disease. Sci Rep. 2020;10(1):1-11.
41. Shibata R, Ouchi N, Ohashi K, Murohara T. The role of adipokines in cardiovascular disease. J Cardiol. 2017;70(4):329-334.
42. Xin Y, Zhang D, Fu Y, Wang C, Li Q, Tian C, et al. C1qtnf-related protein 1 improve insulin resistance by reducing phosphorylation of serine 1101 in insulin receptor substrate 1. Endocr J. 2017:EJ17-0128.
43. Kanemura N, Shibata R, Ohashi K, Ogawa H, Hiramatsu-Ito M, Enomoto T, et al. C1q/TNF-related protein 1 prevents neointimal formation after arterial injury. Atherosclerosis. 2017;257:138-145.
44. Huang Z, Cui T, Liu J, Zhuang Y, Meng Q, Tao L, et al. Characterization of the Expression of CTRP9, a Paralog of Adiponectin. Tsinghua Sci Technol. 2008;13(4):492-499.
45. Zhang F, Zhao Y, Zhang Y, Li D, Tang S, Yang H. CTRP2/ERK1/2 Signaling Pathway Contributes to Acute Myocardial Infarction Injury. Available at SSRN 3224869. 2018.
46. Lei X, Wong GW. C1q/TNF-related protein 2 (CTRP2) deletion promotes adipose tissue lipolysis and hepatic triglyceride secretion. J Biol Chem. 2019;294(43):15638-15649.
47. Ilbeigi D, Khoshfetrat M, Afrisham R, Rahimi B, Gorgani-Firuzjaee S. Serum C1q/TNF-Related Protein-2 (CTRP2) Levels are Associated With Coronary Artery Disease (CAD) in Men. Arch Med Res. 2020;51(4):397-403.
48. Ma Z-G, Yuan Y-P, Xu S-C, Wei W-Y, Xu C-R, Zhang X, et al. CTRP3 attenuates cardiac dysfunction, inflammation, oxidative stress and cell death in diabetic cardiomyopathy in rats. Diabetologia. 2017;60(6):1126-1137.
49. Ban B, Bai B, Zhang M, Hu J, Ramanjaneya M, Tan BK, et al. Low serum cartonectin/CTRP3 concentrations in newly diagnosed type 2 diabetes mellitus: in vivo regulation of cartonectin by glucose. PLoS One. 2014;9(11):e112931.
50. Wei W-Y, Ma Z-G, Zhang N, Xu S-C, Yuan Y-P, Zeng X-F, et al. Overexpression of CTRP3 protects against sepsis-induced myocardial dysfunction in mice. Mol Cell Endocrinol. 2018;476:27-36.
51. Wang S, Ling Y, Liang W, Shen L. Association of serum C1q/TNF-related protein-3 (CTRP-3) in patients with coronary artery disease. BMC Cardiovasc Disord. 2017;17(1):210.
52. Hou Q, Lin J, Huang W, Li M, Feng J, Mao X. CTRP3 stimulates proliferation and anti-apoptosis of prostate cells through PKC signaling pathways. PLoS One. 2015;10(7):e0134006.
53. Yang Y, Li Y, Ma Z, Jiang S, Fan C, Hu W, et al. A brief glimpse at CTRP3 and CTRP9 in lipid metabolism and cardiovascular protection. Prog Lipid Res. 2016;64:170-177.
54. Lee W, Kim MJ, Park EJ, Choi YJ, Park SY. C1qTNF-related protein-6 mediates fatty acid oxidation via the activation of the AMP-activated protein kinase. FEBS Lett. 2010;584(5):968-972.
55. Sadeghi A, Fadaei R, Moradi N, Fouani FZ, Roozbehkia M, Zandieh Z, et al. Circulating levels of C1q/TNF-α-related protein 6 (CTRP6) in polycystic ovary syndrome. IUBMB Life. 2020;72(8):1735-1741.
56. Lei H, Wu D, Wang J-Y, Li L, Zhang C-L, Feng H, et al. C1q/tumor necrosis factor-related protein-6 attenuates post-infarct cardiac fibrosis by targeting RhoA/MRTF-A pathway and inhibiting myofibroblast differentiation. Basic Res Cardiol. 2015;110(4):35.
57. Chi L, Hu X, Zhang W, Bai T, Zhang L, Zeng H, et al. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats. Biochem Biophys Res Commun. 2017;482(4):727-734.
58. Kim M-J, Lee W, Park EJ, Park SY. C1qTNF-related protein-6 increases the expression of interleukin-10 in macrophages. Mol Cells. 2010;30(1):59-64.
59. Du Y, Zhang S, Yu H, Wu Y, Cao N, Wang W, et al. Autoantibodies against β1-adrenoceptor exaggerated ventricular remodeling by inhibiting CTRP9 expression. J Am Heart Assoc. 2019;8(4):e010475.
60. Zhao D, Feng P, Sun Y, Qin Z, Zhang Z, Tan Y, et al. Cardiac-derived CTRP9 protects against myocardial ischemia/reperfusion injury via calreticulin-dependent inhibition of apoptosis. Cell Death Dis. 2018;9(7):723.
61. Li J, Zhang P, Li T, Liu Y, Zhu Q, Chen T, et al. CTRP9 enhances carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. Biochem Biophys Res Commun. 2015;458(4):890-895.
62. Kambara T, Ohashi K, Shibata R, Ogura Y, Maruyama S, Enomoto T, et al. CTRP9 protein protects against myocardial injury following ischemia-reperfusion through AMP-activated protein kinase (AMPK)-dependent mechanism. J Biol Chem. 2012;287(23):18965-18973.
63. Zhang P, Huang C, Li J, Li T, Guo H, Liu T, et al. Globular CTRP9 inhibits oxLDL-induced inflammatory response in RAW 264.7 macrophages via AMPK activation. Mol Cell Biochem. 2016;417(1-2):67-74.
64. Uemura Y, Shibata R, Ohashi K, Enomoto T, Kambara T, Murohara T, et al. Role of a novel Adipocytokine CTRP9 in regulation of vascular remodeling. Am Heart Assoc. 2012.
65. Uemura Y, Shibata R, Ohashi K, Enomoto T, Kambara T, Yamamoto T, et al. Adipose-derived factor CTRP9 attenuates vascular smooth muscle cell proliferation and neointimal formation. FASEB J. 2013;27(1):25-33.
66. Li YX, Run L, Shi T, Zhang YJ. CTRP9 regulates hypoxia-mediated human pulmonary artery smooth muscle cell proliferation, apoptosis and migration via TGF-β1/ERK1/2 signaling pathway. Biochem Biophys Res Commun. 2017;490(4):1319-1325.
67. Liu M, Li W, Wang H, Yin L, Ye B, Tang Y, et al. CTRP9 Ameliorates Atrial Inflammation, Fibrosis, and Vulnerability to Atrial Fibrillation in Post‐Myocardial Infarction Rats. J Am Heart Assoc. 2019;8(21):e013133.
68. Huang C, Zhang P, Li T, Li J, Liu T, Zuo A, et al. Overexpression of CTRP9 attenuates the development of atherosclerosis in apolipoprotein E-deficient mice. Mol Cell Biochem. 2019;455(1-2):99-108.
69. Ogawa H, Ohashi K, Ito M, Shibata R, Kanemura N, Yuasa D, et al. Adipolin/CTRP12 protects against pathological vascular remodelling through suppression of smooth muscle cell growth and macrophage inflammatory response. Cardiovasc Res. 2020;116(1):237-249.
70. Fadaei R, Moradi N, Kazemi T, Chamani E, Azdaki N, Moezibady SA, et al. Decreased serum levels of CTRP12/adipolin in patients with coronary artery disease in relation to inflammatory cytokines and insulin resistance. Cytokine. 2019;113:326-331.
71. Wang C, Xu W, Liang M, Huang D, Huang K. CTRP13 inhibits atherosclerosis via autophagy-lysosome-dependent degradation of CD36. FASEB J. 2019;33(2):2290-2300.
72. Fadaei R, Moradi N, Baratchian M, Aghajani H, Malek M, Fazaeli AA, et al. Association of C1q/TNF-related protein-3 (CTRP3) and CTRP13 serum levels with coronary artery disease in subjects with and without type 2 diabetes mellitus. PloS One. 2016;11(12).
Files | ||
Issue | Vol 1 No 1 (2023) | |
Section | Review Article(s) | |
DOI | https://doi.org/10.18502/abi.v1i1.14060 | |
Keywords | ||
Cardiovascular diseases C1q/ tumor necrosis factor related protein CTRP Adipokine |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |