Fisetin as a Promising Agent in Non-Alcoholic Fatty Liver Disease: Insights into Pathogenic Mechanisms and Therapeutic Potential
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a widespread liver condition characterized by fat accumulation in the liver, with its development involving intricate processes such as inflammation, oxidative damage, and lipid metabolism disturbances. Current treatment options are limited, emphasizing the need for multi-targeted approaches that can simultaneously address these pathogenic pathways to improve liver health. This review synthesizes current evidence on how fisetin impacts molecular pathways relevant to NAFLD. It focuses on its effects in reducing inflammation, oxidative stress, and lipid accumulation, based on experimental and clinical studies examining gene expression, enzyme activity, and signaling pathways involved in hepatic steatosis and injury. This review examines the mechanisms by which fisetin intervention influences NAFLD management. It emphasizes glycemic control through post-prandial glucose reduction, mitigation of insulin resistance, improvements in pancreatic insulin secretion, and suppression of hepatic gluconeogenesis and glycogenolysis. Additionally, fisetin exerts plasma lipid-lowering effects via enhancement of hepatic β-oxidation and reduction of lipogenesis. The anti-inflammatory effects are observed both systemically and locally within the liver. Fisetin also enhances antioxidant defenses by activating antioxidant enzymes, reducing superoxide levels, chelating metal ions, and scavenging free radicals. Furthermore, fisetin modulates endoplasmic reticulum (ER) stress and promotes autophagy, contributing to the amelioration of NAFLD pathology. Taken together, Fisetin exhibits a promising hepatoprotective profile and may serve as a beneficial natural supplement for liver health. Its potential benefits in reducing liver steatosis and supporting NAFLD management, combined with its minimal side effects, make it an attractive candidate for further exploration as a complementary therapy.
2. Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016;65(8):1038-48. https://doi.org/10.1016/j.metabol.2015.12.012
3. Younossi ZM, Marchesini G, Pinto-Cortez H, Petta S. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation. 2019;103(1):22-7. https://doi.org/10.1097/tp.0000000000002484
4. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005-23. https://doi.org/10.1002/hep.25762
5. Qi X, Guo J, Li Y, Fang C, Lin J, Chen X, et al. Vitamin E intake is inversely associated with NAFLD measured by liver ultrasound transient elastography. Sci Rep. 2024;14(1):2592. https://doi.org/10.1038/s41598-024-52482-w
6. Wang Z, Du H, Zhao Y, Ren Y, Ma C, Chen H, et al. Response to pioglitazone in non-alcoholic fatty liver disease patients with vs. without type 2 diabetes: A meta-analysis of randomized controlled trials. Front Endocrinol (Lausanne). 2023;14:1111430. https://doi.org/10.3389/fendo.2023.1111430
7. Akhtar DH, Iqbal U, Vazquez-Montesino LM, Dennis BB, Ahmed A. Pathogenesis of Insulin Resistance and Atherogenic Dyslipidemia in Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol. 2019;7(4):362-70. https://doi.org/10.14218/jcth.2019.00028
8. Fujita K, Nozaki Y, Wada K, Yoneda M, Fujimoto Y, Fujitake M, et al. Dysfunctional very-low-density lipoprotein synthesis and release is a key factor in nonalcoholic steatohepatitis pathogenesis. Hepatology. 2009;50(3):772-80. https://doi.org/10.1002/hep.23094
9. Luci C, Bourinet M, Leclère PS, Anty R, Gual P. Chronic Inflammation in Non-Alcoholic Steatohepatitis: Molecular Mechanisms and Therapeutic Strategies. Front Endocrinol (Lausanne). 2020;11:597648. https://doi.org/10.3389/fendo.2020.597648
10. Chakravarthy MV, Neuschwander-Tetri BA. The metabolic basis of nonalcoholic steatohepatitis. Endocrinol Diabetes Metab. 2020;3(4):e00112. https://doi.org/10.1002/edm2.112
11. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest. 2003;83(5):655-63. https://doi.org/10.1097/01.lab.0000069036.63405.5c
12. Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med. 2020;152:116-41. https://doi.org/10.1016/j.freeradbiomed.2020.02.025
13. Čolak E, Pap D. The role of oxidative stress in the development of obesity and obesity-related metabolic disorders. J Med Biochem. 2021;40(1):1-9. https://doi.org/10.5937/jomb0-24652
14. Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64. https://doi.org/10.1016/j.jhep.2014.12.012
15. Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Invest. 2009;119(5):1201-15. https://doi.org/10.1172/jci37007
16. Zhang XQ, Xu CF, Yu CH, Chen WX, Li YM. Role of endoplasmic reticulum stress in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 2014;20(7):1768-76. https://doi.org/10.3748/wjg.v20.i7.1768
17. Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab. 2010;298(5):E1027-35. https://doi.org/10.1152/ajpendo.00642.2009
18. Soleimani AA, Sarajar BO, Aliabadi M, Azmon M, Meshkani R. A review of the therapeutic effects of polyphenols on non-alcoholic fatty liver disease: Focus on oxidative stress. Acta Biochim Iran. 2024. https://doi.org/10.18502/abi.v2i1.16242
19. Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez AM, et al. Autophagy: A Key Regulator of Homeostasis and Disease: An Overview of Molecular Mechanisms and Modulators. Cells. 2022;11(15). https://doi.org/10.3390/cells11152262
20. Jahangard R, Ebrahimi SSS, Vatannejad A, Meshkani R. Autophagy protects peripheral blood mononuclear cells from high glucose-induced inflammation and apoptosis. Acta Biochim Iran. 2023;1(1):40-9. https://doi.org/10.18502/abi.v1i1.14064
21. Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3):233-42. https://doi.org/10.1038/s41556-018-0037-z
22. Alves-Bezerra M, Cohen DE. Triglyceride Metabolism in the Liver. Compr Physiol. 2017;8(1):1-8. https://doi.org/10.1002/cphy.c170012
23. Raza S, Rajak S, Yen PM, Sinha RA. Autophagy and hepatic lipid metabolism: mechanistic insight and therapeutic potential for MASLD. npj metab health dis. 2024;2(1):19. https://doi.org/10.1038/s44324-024-00022-5
24. Zhang S, Peng X, Yang S, Li X, Huang M, Wei S, et al. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders. Cell Death Dis. 2022;13(2):132. https://doi.org/10.1038/s41419-022-04593-3
25. Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Biomed Res Int. 2014;2014:120179. https://doi.org/10.1155/2014/120179
26. Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, et al. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci. 2023;24(24). https://doi.org/10.3390/ijms242417514
27. Williams JA, Ni HM, Ding Y, Ding WX. Parkin regulates mitophagy and mitochondrial function to protect against alcohol-induced liver injury and steatosis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G324-40. https://doi.org/10.1152/ajpgi.00108.2015
28. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell metab. 2010;11(6):467-78. https://doi.org/10.1016/j.cmet.2010.04.005
29. Ghahremani H, Bahramzadeh A, Bolandnazar K, Emamgholipor S, Hosseini H, Meshkani R. Resveratrol as a potential protective compound against metabolic inflammation. Acta Biochim Iran. 2023;1(2):50-64. https://doi.org/10.18502/abi.v1i2.14101
30. Chahkandi S, Dabiri R, Mirmohammadkhani M, Amiri-Dashatan N, Koushki M. The effect of silymarin on liver enzymes and serum lipid profiles in Iranian patients with non-alcoholic fatty liver disease: A double-blind randomized controlled trial. Acta Biochim Iran. 2023. https://doi.org/10.18502/abi.v1i2.14105
31. Grynkiewicz G, Demchuk OM. New Perspectives for Fisetin. Front Chem. 2019;7:697. https://doi.org/10.3389/fchem.2019.00697
32. Shen B, Shangguan X, Yin Z, Wu S, Zhang Q, Peng W, et al. Inhibitory Effect of Fisetin on α-Glucosidase Activity: Kinetic and Molecular Docking Studies. Molecules. 2021;26(17). https://doi.org/10.3390/molecules26175306
33. Prasath GS, Sundaram CS, Subramanian SP. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine. 2013;44(2):359-68. https://doi.org/10.1007/s12020-012-9866-x
34. Prasath GS, Subramanian SP. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2014;28(10):442-9. https://doi.org/10.1002/jbt.21583
35. Ge C, Xu M, Qin Y, Gu T, Lou D, Li Q, et al. Fisetin supplementation prevents high fat diet-induced diabetic nephropathy by repressing insulin resistance and RIP3-regulated inflammation. Food Funct. 2019;10(5):2970-85. https://doi.org/10.1039/c8fo01653d
36. Cho Y, Chung JH, Do HJ, Jeon HJ, Jin T, Shin MJ. Effects of fisetin supplementation on hepatic lipogenesis and glucose metabolism in Sprague-Dawley rats fed on a high fat diet. Food Chem. 2013;139(1-4):720-7. https://doi.org/10.1016/j.foodchem.2013.01.060
37. Liou CJ, Wei CH, Chen YL, Cheng CY, Wang CL, Huang WC. Fisetin Protects Against Hepatic Steatosis Through Regulation of the Sirt1/AMPK and Fatty Acid β-Oxidation Signaling Pathway in High-Fat Diet-Induced Obese Mice. Cell Physiol Biochem. 2018;49(5):1870-84. https://doi.org/10.1159/000493650
38. Choi MS, Choi JY, Kwon EY. Fisetin Alleviates Hepatic and Adipocyte Fibrosis and Insulin Resistance in Diet-Induced Obese Mice. J Med Food. 2020;23(10):1019-32. https://doi.org/10.1089/jmf.2019.4619
39. Adnan M, Jeon BB, Chowdhury MHU, Oh KK, Das T, Chy MNU, et al. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus. Life (Basel). 2022;12(2). https://doi.org/10.3390/life12020277
40. Jin T, Kim OY, Shin MJ, Choi EY, Lee SS, Han YS, et al. Fisetin up-regulates the expression of adiponectin in 3T3-L1 adipocytes via the activation of silent mating type information regulation 2 homologue 1 (SIRT1)-deacetylase and peroxisome proliferator-activated receptors (PPARs). J Agric Food Chem. 2014;62(43):10468-74. https://doi.org/10.1021/jf502849j
41. Yang Z, Zhang J, Yuan Q, Wang X, Zeng W, Mi Y, et al. Flavonoid Fisetin Alleviates Ovarian Aging of Laying Chickens by Enhancing Antioxidant Capacity and Glucose Metabolic Homeostasis. Antioxidants (Basel). 2024;13(12). https://doi.org/10.3390/antiox13121432
42. Constantin RP, Constantin J, Pagadigorria CL, Ishii-Iwamoto EL, Bracht A, Ono Mde K, et al. The actions of fisetin on glucose metabolism in the rat liver. Cell Biochem Funct. 2010;28(2):149-58. https://doi.org/10.1002/cbf.1635
43. Aarabi MH, Mirhashemi SM. To estimate effective antiamyloidogenic property of melatonin and fisetin and their actions to destabilize amyloid fibrils. Pak J Pharm Sci. 2017;30(5):1589-93.
44. Zhong R, Farag MA, Chen M, He C, Xiao J. Recent advances in the biosynthesis, structure–activity relationships, formulations, pharmacology, and clinical trials of fisetin. eFood. 2022;3(1-2):e3. https://doi.org/https://doi.org/10.1002/efd2.3
45. Xu M, Ge C, Qin Y, Gu T, Lv J, Wang S, et al. Activated TNF-α/RIPK3 signaling is involved in prolonged high fat diet-stimulated hepatic inflammation and lipid accumulation: inhibition by dietary fisetin intervention. Food Funct. 2019;10(3):1302-16. https://doi.org/10.1039/c8fo01615a
46. Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34-44. https://doi.org/10.1016/j.tifs.2017.10.003
47. Sattari M, Amri J, Shahaboddin ME, Sattari M, Tabatabaei-Malazy O, Azmon M, et al. The protective effects of fisetin in metabolic disorders: a focus on oxidative stress and associated events. J Diabetes Metab Disord. 2024;23(2):1753-71. https://doi.org/10.1007/s40200-024-01502-7
48. Shi YS, Li CB, Li XY, Wu J, Li Y, Fu X, et al. Fisetin Attenuates Metabolic Dysfunction in Mice Challenged with a High-Fructose Diet. J Agric Food Chem. 2018;66(31):8291-8. https://doi.org/10.1021/acs.jafc.8b02140
49. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A. Fisetin Imparts Neuroprotection in Experimental Diabetic Neuropathy by Modulating Nrf2 and NF-κB Pathways. Cell Mol Neurobiol. 2016;36(6):883-92. https://doi.org/10.1007/s10571-015-0272-9
50. Correia da Silva D, Valentão P, Andrade PB, Pereira DM. A Pipeline for Natural Small Molecule Inhibitors of Endoplasmic Reticulum Stress. Front Pharmacol. 2022;13:956154. https://doi.org/10.3389/fphar.2022.956154
51. Correia da Silva D, Jervis PJ, Martins JA, Valentão P, Ferreira PMT, Pereira DM. Fisetin derivatives exhibit enhanced anti-inflammatory activity and modulation of endoplasmic reticulum stress. Int Immunopharmacol. 2023;119:110178. https://doi.org/10.1016/j.intimp.2023.110178
52. Molagoda IMN, Kavinda MHD, Choi YH, Lee H, Kang CH, Lee MH, et al. Fisetin Protects HaCaT Human Keratinocytes from Fine Particulate Matter (PM(2.5))-Induced Oxidative Stress and Apoptosis by Inhibiting the Endoplasmic Reticulum Stress Response. Antioxidants (Basel). 2021;10(9). https://doi.org/10.3390/antiox10091492
53. Dai X, Kuang Q, Sun Y, Xu M, Zhu L, Ge C, et al. Fisetin represses oxidative stress and mitochondrial dysfunction in NAFLD through suppressing GRP78-mediated endoplasmic reticulum (ER) stress. J Funct Foods. 2022;90:104954. https://doi.org/https://doi.org/10.1016/j.jff.2022.104954
54. Kim S, Choi KJ, Cho SJ, Yun SM, Jeon JP, Koh YH, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933. https://doi.org/10.1038/srep24933
55. Kim SG, Sung JY, Kang YJ, Choi HC. PPARγ activation by fisetin mitigates vascular smooth muscle cell senescence via the mTORC2-FoxO3a-autophagy signaling pathway. Biochemical Pharmacology. 2023;218:115892. https://doi.org/https://doi.org/10.1016/j.bcp.2023.115892
56. Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, et al. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol. 2019;134:110824. https://doi.org/10.1016/j.fct.2019.110824
57. Zhang J, Zhao L, Hu C, Wang T, Lu J, Wu C, et al. Fisetin Prevents Acetaminophen-Induced Liver Injury by Promoting Autophagy. Front Pharmacol. 2020;11:162. https://doi.org/10.3389/fphar.2020.00162
58. Jung CH, Kim H, Ahn J, Jeon TI, Lee DH, Ha TY. Fisetin regulates obesity by targeting mTORC1 signaling. J Nutr Biochem. 2013;24(8):1547-54. https://doi.org/10.1016/j.jnutbio.2013.01.003
59. Syed DN, Chamcheu JC, Khan MI, Sechi M, Lall RK, Adhami VM, et al. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling. Biochem Pharmacol. 2014;89(3):349-60. https://doi.org/10.1016/j.bcp.2014.03.007
60. Sattari M, Karimpour A, Akhavan Taheri M, Larijani B, Meshkani R, Tabatabaei-Malazy O, et al. Optimized Effects of Fisetin and Hydroxychloroquine on ER Stress and Autophagy in Nonalcoholic Fatty Pancreas Disease in Mice. J Diabetes Res. 2025;2025(1):2795127. https://doi.org/10.1155/jdr/2795127
61. Sun Y, Qin H, Zhang H, Feng X, Yang L, Hou DX, et al. Fisetin inhibits inflammation and induces autophagy by mediating PI3K/AKT/mTOR signaling in LPS-induced RAW264.7 cells. Food Nutr Res. 2021;65. https://doi.org/10.29219/fnr.v65.6355
Files | ||
Issue | Vol 2 No 4 (2024) | |
Section | Review Article(s) | |
Keywords | ||
Fisetin NAFLD Hepatoprotection Natural Compound Mechanism of Action |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |