Review Article

Breaking Barriers in Cancer Treatment: An updated review on Clinical Translation of Novel Nanocarrier Systems

Abstract

Cancer is still a significant cause of illness and death globally, and it is therefore crucial to find new ways of improving treatment efficacy and patient outcomes. Chemotherapy has the potential to act effectively on cancer cells but also impacts normal cells, leading to serious side effects. In this review, we discuss how nanotechnology is overcoming these challenges through novel concepts to improve the specificity and efficiency of chemotherapy delivery. Through the utilization of nanocarriers (NCs), including lipid-based, polymer-based, protein-based, carbon-based, and inorganic nanosystems (for example, metallic nanoparticles, quantum dots, mesoporous silica nanoparticles, and metal-organic frameworks), as well as hybrid and responsive nanosystems, nanotechnology provides the possibility for more specific and sensitive targeted drug delivery. All these can reduce undesired side effects and enhance treatment outcomes by facilitating the potential for earlier treatment and diagnosis. Our review article presents an overview of clinical trials in progress and FDA-approved NC-based anticancer therapies, unveiling the progress in the area. Utilizing nanotechnology for cancer treatment is a significant paradigm shift, with the potential to revolutionize drug delivery, minimize side effects, and ultimately improve the lives of cancer patients. We also highlighted the challenges inherent in utilizing NCs for targeted drug delivery, alongside potential strategies to tackle these obstacles, with the ultimate goal of advancing cancer therapy and improving overall survival rates for patients.

1. World Health Organization D. Global health estimates 2020: deaths by cause, age, sex, by country and by region, 2000-2019. Who Geneva, Switzerland; 2020.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71(3):209-49. https://doi.org/10.3322/caac.21660
3. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev. 2015;115(19):10530-74. https://doi.org/10.1021/acs.chemrev.5b00321
4. Wan X, Song Y, Song N, Li J, Yang L, Li Y, et al. The preliminary study of immune superparamagnetic iron oxide nanoparticles for the detection of lung cancer in magnetic resonance imaging. Carbohydr Res. 2016;419:33-40. https://doi.org/10.1016/j.carres.2015.11.003
5. Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Technol. 2024;5:109-22. https://doi.org/10.1016/j.bmt.2023.09.001
6. Berger JL, Smith A, Zorn KK, Sukumvanich P, Olawaiye AB, Kelley J, et al. Outcomes analysis of an alternative formulation of PEGylated liposomal doxorubicin in recurrent epithelial ovarian carcinoma during the drug shortage era. Onco Targets Ther. 2014;7:1409-13. https://doi.org/10.2147/OTT.S62881
7. van der Meel R, Lammers T, Hennink WE. Cancer nanomedicines: oversold or underappreciated? Expert Opin Drug Deliv. 2017;14(1):1-5. https://doi.org/10.1080/17425247.2017.1262346
8. Loh XJ, Lee TC, Dou Q, Deen GR. Utilising inorganic nanocarriers for gene delivery. Biomater Sci. 2016;4(1):70-86. https://doi.org/10.1039/c5bm00277j
9. Shamsabadipour A, Pourmadadi M, Davodabadi F, Rahdar A, Romanholo Ferreira LF. Applying thermodynamics as an applicable approach to cancer diagnosis, evaluation, and therapy: A review. J Drug Deliv Sci Tec. 2023;86:104681. https://doi.org/10.1016/j.jddst.2023.104681
10. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles' Physicochemical Properties on Responses in Biological Systems. Polymers (Basel). 2023;15(7):1596-. https://doi.org/10.3390/polym15071596
11. Adepu S, Ramakrishna S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules. 2021;26(19):5905-. https://doi.org/10.3390/molecules26195905
12. Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-Mediated Drug Delivery Systems for Anticancer Agents: An Overview and Perspectives. Int J Nanomedicine. 2021;16:1313-30. https://doi.org/10.2147/IJN.S289443
13. Ulucan-Karnak F, Kuru Cİ. Advantages of nanodrug targeting than conventional dosage system. Nanotechnology for Drug Delivery and Pharmaceuticals: Elsevier; 2023. p. 295-310.
14. Kim SJ, Puranik N, Yadav D, Jin JO, Lee PCW. Lipid Nanocarrier-Based Drug Delivery Systems: Therapeutic Advances in the Treatment of Lung Cancer. Int J Nanomedicine. 2023;18:2659-76. https://doi.org/10.2147/IJN.S406415
15. Dana P, Bunthot S, Suktham K, Surassmo S, Yata T, Namdee K, et al. Active targeting liposome-PLGA composite for cisplatin delivery against cervical cancer. Colloids Surf B Biointerfaces. 2020;196:111270. https://doi.org/10.1016/j.colsurfb.2020.111270
16. Luiz MT, Dutra JAP, de Cássia Ribeiro T, Carvalho GC, Sábio RM, Marchetti JM, et al. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf A: Physicochem Eng Asp. 2022;645:128935. https://doi.org/10.1016/j.colsurfa.2022.128935
17. Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci. 2023;24(7):6199. https://doi.org/10.3390/ijms24076199
18. Affram KO, Smith T, Ofori E, Krishnan S, Underwood P, Trevino JG, et al. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J Drug Deliv Sci Technol. 2020;55:101374. https://doi.org/10.1016/j.jddst.2019.101374
19. Oliveira MS, Aryasomayajula B, Pattni B, Mussi SV, Ferreira LAM, Torchilin VP. Solid lipid nanoparticles co-loaded with doxorubicin and alpha-tocopherol succinate are effective against drug-resistant cancer cells in monolayer and 3-D spheroid cancer cell models. Int J Pharm. 2016;512(1):292-300. https://doi.org/10.1016/j.ijpharm.2016.08.049
20. Sabzichi M, Mohammadian J, Bazzaz R, Pirouzpanah MB, Shaaker M, Hamishehkar H, et al. Chrysin loaded nanostructured lipid carriers (NLCs) triggers apoptosis in MCF-7 cancer cells by inhibiting the Nrf2 pathway. Process Biochem. 2017;60:84-91. https://doi.org/10.1016/j.procbio.2017.05.024
21. Di H, Wu H, Gao Y, Li W, Zou D, Dong C. Doxorubicin- and cisplatin-loaded nanostructured lipid carriers for breast cancer combination chemotherapy. Drug Dev Ind Pharm. 2016;42(12):2038-43. https://doi.org/10.1080/03639045.2016.1190743
22. Hosseini S, Mohammadnejad J, Salamat S, Zadeh ZB, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Mater Today Chem. 2023;29:101400. https://doi.org/10.1016/j.mtchem.2023.101400
23. Zhang L, Qin Y, Zhang Z, Fan F, Huang C, Lu L, et al. Dual pH/reduction-responsive hybrid polymeric micelles for targeted chemo-photothermal combination therapy. Acta Biomater. 2018;75:371-85. https://doi.org/10.1016/j.actbio.2018.05.026
24. Chen Y, Ren J, Tian D, Li Y, Jiang H, Zhu J. Polymer-Upconverting Nanoparticle Hybrid Micelles for Enhanced Synergistic Chemo-Photodynamic Therapy: Effects of Emission-Absorption Spectral Match. Biomacromolecules. 2019;20(10):4044-52. https://doi.org/10.1021/acs.biomac.9b01211
25. Fan Y, Zhang J, Shi M, Li D, Lu C, Cao X, et al. Poly (amidoamine) dendrimer-coordinated copper (II) complexes as a theranostic nanoplatform for the radiotherapy-enhanced magnetic resonance imaging and chemotherapy of tumors and tumor metastasis. Nano Lett. 2019;19(2):1216-26. https://doi.org/10.1021/acs.nanolett.8b04757
26. Cao J, Wang C, Guo L, Xiao Z, Liu K, Yan H. Co-administration of a charge-conversional dendrimer enhances antitumor efficacy of conventional chemotherapy. Eur J Pharm Biopharm. 2018;127:371-7. https://doi.org/10.1016/j.ejpb.2018.02.035
27. Shang L, Jiang X, Yang T, Xu H, Xie Q, Hu M, et al. Enhancing cancer chemo-immunotherapy by biomimetic nanogel with tumor targeting capacity and rapid drug-releasing in tumor microenvironment. Acta Pharm Sin B. 2022;12(5):2550-67. https://doi.org/10.1016/j.apsb.2021.11.004
28. Wang Y, Zu M, Ma X, Jia D, Lu Y, Zhang T, et al. Glutathione-responsive multifunctional “Trojan Horse” nanogel as a nanotheranostic for combined chemotherapy and photodynamic anticancer therapy. ACS Appl Mater Interfaces. 2020;12(45):50896-908. https://doi.org/10.1021/acsami.0c15781
29. Xiong K, Zhang Y, Wen Q, Luo J, Lu Y, Wu Z, et al. Co-delivery of paclitaxel and curcumin by biodegradable polymeric nanoparticles for breast cancer chemotherapy. Int J Pharm. 2020;589:119875. https://doi.org/10.1016/j.ijpharm.2020.119875
30. Khan MZ, Tahir D, Asim M, Israr M, Haider A, Xu DD. Revolutionizing Cancer Care: Advances in Carbon-Based Materials for Diagnosis and Treatment. Cureus. 2024;16(1):e52511. https://doi.org/10.7759/cureus.52511
31. Zare H, Ahmadi S, Ghasemi A, Ghanbari M, Rabiee N, Bagherzadeh M, et al. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int J Nanomedicine. 2021;16:1681-706. https://doi.org/10.2147/IJN.S299448
32. Zhang P, Yi W, Hou J, Yoo S, Jin W, Yang Q. A carbon nanotube-gemcitabine-lentinan three-component composite for chemo-photothermal synergistic therapy of cancer. Int J Nanomedicine. 2018;13:3069-80. https://doi.org/10.2147/IJN.S165232
33. Zhang L, Rong P, Chen M, Gao S, Zhu L. A novel single walled carbon nanotube (SWCNT) functionalization agent facilitating in vivo combined chemo/thermo therapy. Nanoscale. 2015;7(39):16204-13. https://doi.org/10.1039/c5nr03752b
34. Wang B, Song H, Qu X, Chang J, Yang B, Lu S. Carbon dots as a new class of nanomedicines: opportunities and challenges. Coord Chem Rev. 2021;442:214010. https://doi.org/10.1016/j.ccr.2021.214010
35. Chung YJ, Kim J, Park CB. Photonic carbon dots as an emerging nanoagent for biomedical and healthcare applications. ACS nano. 2020;14(6):6470-97. https://doi.org/10.1021/acsnano.0c02114
36. Li D, Fan Y, Shen M, Banyai I, Shi X. Design of dual drug-loaded dendrimer/carbon dot nanohybrids for fluorescence imaging and enhanced chemotherapy of cancer cells. J Mater Chem B. 2019;7(2):277-85. https://doi.org/10.1039/c8tb02723d
37. Feng T, Chua HJ, Zhao Y. Carbon‐dot‐mediated Co‐administration of chemotherapeutic agents for reversing cisplatin resistance in cancer therapy. ChemNanoMat. 2018;4(8):801-6. https://doi.org/10.1002/cnma.201700367
38. Johnston HJ, Hutchison GR, Christensen FM, Aschberger K, Stone V. The biological mechanisms and physicochemical characteristics responsible for driving fullerene toxicity. Toxicol Sci. 2010;114(2):162-82. https://doi.org/10.1093/toxsci/kfp265
39. Shi J, Liu Y, Wang L, Gao J, Zhang J, Yu X, et al. A tumoral acidic pH-responsive drug delivery system based on a novel photosensitizer (fullerene) for in vitro and in vivo chemo-photodynamic therapy. Acta Biomater. 2014;10(3):1280-91. https://doi.org/10.1016/j.actbio.2013.10.037
40. Dash BS, Jose G, Lu Y-J, Chen J-P. Functionalized reduced graphene oxide as a versatile tool for cancer therapy. Int J Mol Sci. 2021;22(6):2989. https://doi.org/10.3390/ijms22062989
41. Hoseini-Ghahfarokhi M, Mirkiani S, Mozaffari N, Abdolahi Sadatlu MA, Ghasemi A, Abbaspour S, et al. Applications of graphene and graphene oxide in smart drug/gene delivery: is the world still flat? Int J Nanomedicine. 2020:9469-96. https://doi.org/10.2147/ijn.s265876
42. Tran TH, Nguyen HT, Pham TT, Choi JY, Choi HG, Yong CS, et al. Development of a Graphene Oxide Nanocarrier for Dual-Drug Chemo-phototherapy to Overcome Drug Resistance in Cancer. ACS Appl Mater Interfaces. 2015;7(51):28647-55. https://doi.org/10.1021/acsami.5b10426
43. Desai N, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv. 2021;18(9):1261-90. https://doi.org/10.1080/17425247.2021.1912008
44. Loutfy SA, Mohamed MB, Abdel-Ghani NT, Al-Ansary N, Abdulla WA, El-Borady OM, et al. Metallic nanomaterials as drug carriers to decrease side effects of chemotherapy (in vitro: cytotoxicity study). J Nanopharm Drug Deliv. 2013;1(2):138-49. https://doi.org/10.1166/jnd.2013.1010
45. Reczyńska K, Marszałek M, Zarzycki A, Reczyński W, Kornaus K, Pamuła E, et al. Superparamagnetic iron oxide nanoparticles modified with silica layers as potential agents for lung cancer treatment. Nanomaterials. 2020;10(6):1076. https://doi.org/10.3390/nano10061076
46. Chakraborty P, Das SS, Dey A, Chakraborty A, Bhattacharyya C, Kandimalla R, et al. Quantum dots: The cutting-edge nanotheranostics in brain cancer management. J Contr Release. 2022;350:698-715. https://doi.org/10.1016/j.jconrel.2022.08.047
47. Li X, Vinothini K, Ramesh T, Rajan M, Ramu A. Combined photodynamic-chemotherapy investigation of cancer cells using carbon quantum dot-based drug carrier system. Drug Deliv. 2020;27(1):791-804. https://doi.org/10.1080/10717544.2020.1765431
48. Wang C, Chen Y, Xu Z, Chen B, Zhang Y, Yi X, et al. Fabrication and characterization of novel cRGD modified graphene quantum dots for chemo-photothermal combination therapy. Sens Actuators B: Chem. 2020;309:127732. https://doi.org/10.1016/j.snb.2020.127732
49. Zhang C, Xie H, Zhang Z, Wen B, Cao H, Bai Y, et al. Applications and Biocompatibility of Mesoporous Silica Nanocarriers in the Field of Medicine. Front Pharmacol. 2022;13:829796. https://doi.org/10.3389/fphar.2022.829796
50. Yan T, He J, Liu R, Liu Z, Cheng J. Chitosan capped pH-responsive hollow mesoporous silica nanoparticles for targeted chemo-photo combination therapy. Carbohydr Polym. 2020;231:115706. https://doi.org/10.1016/j.carbpol.2019.115706
51. Gu T, Chen T, Cheng L, Li X, Han G, Liu Z. Mesoporous silica decorated with platinum nanoparticles for drug delivery and synergistic electrodynamic-chemotherapy. Nano Res. 2020;13:2209-15. https://doi.org/10.1007/s12274-020-2838-1
52. Gómez-Romero P, Sanchez C. Funct Hybr Mater: John Wiley & Sons; 2006.
53. Mottaghitalab F, Farokhi M, Fatahi Y, Atyabi F, Dinarvand R. New insights into designing hybrid nanoparticles for lung cancer: Diagnosis and treatment. J Control Release 2019;295:250-67. https://doi.org/10.1016/j.jconrel.2019.01.009
54. Huang H, Liu R, Yang J, Dai J, Fan S, Pi J, et al. Gold Nanoparticles: Construction for Drug Delivery and Application in Cancer Immunotherapy. Pharmaceutics. 2023;15(7). https://doi.org/10.3390/pharmaceutics15071868
55. Cheng D, Ji Y, Wang B, Wang Y, Tang Y, Fu Y, et al. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021;128:435-46. https://doi.org/10.1016/j.actbio.2021.04.006
56. Haine AT, Niidome T. Drug delivery systems controlled by irradiation of near infrared light. J Photopolym Sci Technol. 2015;28(5):705-10. https://doi.org/10.2494/photopolymer.28.705
57. Lin Q, Jia M, Fu Y, Li B, Dong Z, Niu X, et al. Upper-Critical-Solution-Temperature Polymer Modified Gold Nanorods for Laser Controlled Drug Release and Enhanced Anti-Tumour Therapy. Front Pharmacol. 2021;12:738630. https://doi.org/10.3389/fphar.2021.738630
58. Zhang W, Zhang Z, Zhang Y. The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Res Lett. 2011;6(1):555. https://doi.org/10.1186/1556-276X-6-555
59. Maji SK, Yu S, Choi E, Lim JW, Jang D, Kim GY, et al. Anisotropic Plasmonic Gold Nanorod-Indocyanine Green@Reduced Graphene Oxide-Doxorubicin Nanohybrids for Image-Guided Enhanced Tumor Theranostics. ACS Omega. 2022;7(17):15186-99. https://doi.org/10.1021/acsomega.2c01306
60. Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev. 2022;460:214482. https://doi.org/10.1016/j.ccr.2022.214482
61. Ray S, Saha S, Sa B, Chakraborty J. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma. Drug Deliv Transl Res. 2017;7(2):259-75. https://doi.org/10.1007/s13346-016-0351-6
62. Ferreira Soares DC, Domingues SC, Viana DB, Tebaldi ML. Polymer-hybrid nanoparticles: Current advances in biomedical applications. Biomed Pharmacother. 2020;131:110695. https://doi.org/10.1016/j.biopha.2020.110695
63. Wakaskar RR. General overview of lipid-polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes. J Drug Target. 2018;26(4):311-8. https://doi.org/10.1080/1061186X.2017.1367006
64. Parveen S, Gupta P, Kumar S, Banerjee M. Lipid polymer hybrid nanoparticles as potent vehicles for drug delivery in cancer therapeutics. Med Drug Discov. 2023:100165. https://doi.org/10.1016/j.medidd.2023.100165
65. Yalcin TE, Ilbasmis-Tamer S, Takka S. Antitumor activity of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs): In vitro and in vivo. Int J Pharm. 2020;580:119246. https://doi.org/10.1016/j.ijpharm.2020.119246
66. Gao F, Zhang J, Fu C, Xie X, Peng F, You J, et al. iRGD-modified lipid-polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and tumor-targeting ability. Int J Nanomedicine. 2017;12(null):4147-62. https://doi.org/10.2147/IJN.S134148
67. Bochicchio S, Lamberti G, Barba A. Polymer–lipid pharmaceutical nanocarriers: innovations by new formulations and production technologies. Pharmaceutics. 2021;13:1-5. https://doi.org/10.3390/pharmaceutics13020198
68. Miao Y, Yang T, Yang S, Yang M, Mao C. Protein nanoparticles directed cancer imaging and therapy. Nano Converg. 2022;9(1):2. https://doi.org/10.1186/s40580-021-00293-4
69. Saleh T, Soudi T, Shojaosadati SA. Aptamer functionalized curcumin-loaded human serum albumin (HSA) nanoparticles for targeted delivery to HER-2 positive breast cancer cells. Int J Biol Macromol. 2019;130:109-16. https://doi.org/10.1016/j.ijbiomac.2019.02.129
70. Ge J, Neofytou E, Lei J, Beygui RE, Zare RN. Protein-polymer hybrid nanoparticles for drug delivery. Small. 2012;8(23):3573-8. https://doi.org/10.1002/smll.201200889
71. Nguyen TD, Bordeau BM, Balthasar JP. Mechanisms of ADC Toxicity and Strategies to Increase ADC Tolerability. Cancers (Basel). 2023;15(3):713. https://doi.org/10.3390/cancers15030713
72. Liu K, Li M, Li Y, Li Y, Chen Z, Tang Y, et al. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers. Mol Cancer. 2024;23(1):62. https://doi.org/10.1186/s12943-024-01963-7
73. Ballantyne A, Dhillon S. Trastuzumab emtansine: first global approval. Drugs. 2013;73(7):755-65. https://doi.org/10.1007/s40265-013-0050-2
74. Bantounou MA, Plascevic J, MacDonald L, Wong MC, O'Connell N, Galley HF. Enfortumab vedotin and pembrolizumab as monotherapies and combination treatment in locally advanced or metastatic urothelial carcinoma: A narrative review. Curr Urol. 2023;17(4):271-9. https://doi.org/10.1097/CU9.0000000000000204
75. Rosenberg J, Sridhar SS, Zhang J, Smith D, Ruether D, Flaig TW, et al. EV-101: A Phase I Study of Single-Agent Enfortumab Vedotin in Patients With Nectin-4-Positive Solid Tumors, Including Metastatic Urothelial Carcinoma. J Clin Oncol. 2020;38(10):1041-9. https://doi.org/10.1200/JCO.19.02044
76. Taghizadeh B, Taranejoo S, Monemian SA, Salehi Moghaddam Z, Daliri K, Derakhshankhah H, et al. Classification of stimuli–responsive polymers as anticancer drug delivery systems. J Drug Deliv. 2015;22(2):145-55. https://doi.org/10.3109/10717544.2014.887157
77. Yan Y, Ding H. pH-Responsive Nanoparticles for Cancer Immunotherapy: A Brief Review. Nanomaterials (Basel). 2020;10(8):1613. https://doi.org/10.3390/nano10081613
78. Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol. 2022;12:855019. https://doi.org/10.3389/fonc.2022.855019
79. Pandey A, Kulkarni S, Vincent AP, Nannuri SH, George SD, Mutalik S. Hyaluronic acid-drug conjugate modified core-shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. Int J Pharm. 2020;588:119735. https://doi.org/10.1016/j.ijpharm.2020.119735
80. Ruan L, Chen J, Du C, Lu H, Zhang J, Cai X, et al. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact Mater. 2022;13:191-9. https://doi.org/10.1016/j.bioactmat.2021.10.045
81. Chen G, Jaskula-Sztul R, Esquibel CR, Lou I, Zheng Q, Dammalapati A, et al. Neuroendocrine Tumor-Targeted Upconversion Nanoparticle-Based Micelles for Simultaneous NIR-Controlled Combination Chemotherapy and Photodynamic Therapy, and Fluorescence Imaging. Adv Funct Mater. 2017;27(8):1604671. https://doi.org/10.1002/adfm.201604671
82. Yue C, Zhang C, Alfranca G, Yang Y, Jiang X, Yang Y, et al. Near-Infrared Light Triggered ROS-activated Theranostic Platform based on Ce6-CPT-UCNPs for Simultaneous Fluorescence Imaging and Chemo-Photodynamic Combined Therapy. Theranostics. 2016;6(4):456-69. https://doi.org/10.7150/thno.14101
83. FDA Highlights of prescribing information for Abraxane.Accessdata.fda.gov Reference ID: 4661467.
84. Shi Y. Clinical translation of nanomedicine and biomaterials for cancer immunotherapy: progress and perspectives. Adv Therap. 2020;3(9):1900215. https://doi.org/10.1002/adtp.201900215
85. FDA Highlights of prescribing information for Doxil.Accessdata.fda.gov Reference ID: 4475299.
86. Zhao N, Woodle MC, Mixson AJ. Advances in delivery systems for doxorubicin. J Nanomed Nanotechnol. 2018;9(5). https://doi.org/10.4172/2157-7439.1000519
87. Aversa SM, Cattelan AM, Salvagno L, Crivellari G, Banna G, Trevenzoli M, et al. Treatments of AIDS-related Kaposi's sarcoma. Crit Rev Oncol Hematol. 2005;53(3):253-65. https://doi.org/10.1016/j.critrevonc.2004.10.009
88. Janknegt R. Liposomal formulations of cytotoxic drugs. Support Care Cancer. 1996;4(4):298-304. https://doi.org/10.1007/BF01358884
89. FDA Highlights of prescribing information for Marqibo.Accessdata.fda.gov Reference ID: 4620960.
90. Chadha J, Hussein S, Zhan Y, Shulman J, Brody J, Ratner L, et al. Liposomal Vincristine as a Bridge Therapy Prior to CAR-T Therapy in Relapsed and Refractory Diffuse Large B-Cell Lymphoma? Int J Hematol Oncol Stem Cell Res. 2019;13(2):102. https://doi.org/10.18502/ijhoscr.v13i2.695
91. FDA Highlights of prescribing information for LUPRON depot.Accessdata.fda.gov Reference ID: 4398579.
92. Lyou Y, Dorff TB. Hormonal manipulation in androgen signaling: a narrative review on using novel androgen therapy agents to optimize clinical outcomes and minimize side effects for prostate cancer patients. Transl Androl Urol. 2021;10(7):3199-207. https://doi.org/10.21037/tau-20-1053
93. FDA Highlights of prescribing information for Eligard.Accessdata.fda.gov Reference ID 4391859.
94. FDA Highlights of prescribing information for Onivyde.Accessdata.fda.gov Reference ID: 3836766.
95. Wang-Gillam A, Hubner RA, Siveke JT, Von Hoff DD, Belanger B, de Jong FA, et al. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur J Cancer or EJC. 2019;108:78-87. https://doi.org/10.1016/j.ejca.2018.12.007
96. FDA Highlights of prescribing information for ONPATTRO (patisiran).Accessdata.fda.gov Reference ID: 4791521.
97. Adams D, Gonzalez-Duarte A, O'Riordan WD, Yang CC, Ueda M, Kristen AV, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11-21. https://doi.org/10.1056/NEJMoa1716153
98. FDA Highlights of prescribing information for VYXEOS.Accessdata.fda.gov Reference ID: 4134238.
Files
IssueVol 2 No 4 (2024) QRcode
SectionReview Article(s)
Keywords
Chemotherapy Cancer Therapy Clinical Trials Drug Delivery Nanotechnology Nanocarriers

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Fathi-karkan S, Davodabadi F, Mirinejad S, Sargazi S, Amri J, Ulucan-Karnak F, Utku Peker H, Sargazi S. Breaking Barriers in Cancer Treatment: An updated review on Clinical Translation of Novel Nanocarrier Systems. ABI. 2024;2(4):170-185.