Review Article

Seminal Plasma Biochemical Markers and Microbial Infections: Diagnostic and Pathophysiological Insights into Male Infertility

Abstract

Male infertility is a multifactorial condition, with an increasing body of evidence highlighting the pivotal role of seminal plasma biochemical markers and microbial infections in its pathogenesis and diagnosis. Seminal plasma, a complex fluid enriched with proteins, enzymes, antioxidants, and metabolites, reflects the functional status of the male reproductive tract. Alterations in its biochemical composition such as decreased antioxidant capacity, disrupted energy metabolism, and elevated inflammatory mediators, are frequently associated with impaired sperm function. Concurrently, microbial infections, including those caused by Chlamydia trachomatis and Escherichia coli, can adversely affect seminal parameters through direct sperm damage, oxidative stress, and inflammatory responses. Emerging evidence suggests intricate interactions between infections and biochemical milieu in seminal plasma, which may exacerbate sperm dysfunction and compromise fertility. This review synthesizes current knowledge on key seminal plasma biomarkers and their diagnostic utility, and elucidates the pathophysiological mechanisms linking microbial infections to male infertility. Understanding these interconnected pathways offers novel insights into male reproductive health and may facilitate the development of more targeted diagnostic and treatment strategies in the context of infertility.

References
1. Oghbaei H, Rezaei YR, Nikanfar S, Zarezadeh R, Sadegi M, Latifi Z, et al. Effects of bacteria on male fertility: Spermatogenesis and sperm function. Life Sci. 2020;256:117891. https://doi.org/10.1016/j.lfs.2020.117891
2. Askienazy-Elbhar M. Male genital tract infection: the point of view of the bacteriologist. Gynecol Obstet Fertil. 2005;33(9):691-7.
3. Sandoval JS, Raburn D, Muasher S. Leukocytospermia: overview of diagnosis, implications, and management of a controversial finding. Middle East Fertil Soc J. 2013;18(3):129-34. https://doi.org/10.1016/j.mefs.2013.02.004
4. Solomon M, Henkel R. Semen culture and the assessment of genitourinary tract infections. Indian J Urol. 2017;33(3):188-93. https://doi.org/10.4103/iju.iju_407_16
5. Sullivan EA, Zegers-Hochschild F, Mansour R, Ishihara O, De Mouzon J, Nygren K, et al. International Committee for Monitoring Assisted Reproductive Technologies (ICMART) world report: assisted reproductive technology 2004. Hum Reprod. 2013;28(5):1375-90. https://doi.org/10.1093/humrep/det036
6. Krausz C, Rosta V, Swerdloff RS, Wang C. Genetics of male infertility. Emery and rimoin's principles and practice of medical genetics and genomics. 2022:121-47. https://doi.org/10.1016/b978-0-12-815236-2.00010-2
7. Gilany K, Minai-Tehrani A, Savadi-Shiraz E, Rezadoost H, Lakpour N. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder. J Reprod Infertil. 2015;16(2):61.
8. Robert M, Gagnon C. Sperm motility inhibitor from human seminal plasma: association with semen coagulum. Hum Reprod. 1995;10(8):2192-7. https://doi.org/10.1093/oxfordjournals.humrep.a136267
9. Drabovich AP, Saraon P, Jarvi K, Diamandis EP. Seminal plasma as a diagnostic fluid for male reproductive system disorders. Nat Rev Urol. 2014;11(5):278-88. https://doi.org/10.1038/nrurol.2014.74
10. Milardi D, Grande G, Vincenzoni F, Messana I, Pontecorvi A, De Marinis L, et al. Proteomic approach in the identification of fertility pattern in seminal plasma of fertile men. Fertil Steril. 2012;97(1):67-73. e1. https://doi.org/10.1016/j.fertnstert.2011.10.013
11. Carvalho MOS, Souza ALCS, Carvalho MB, Pacheco APAS, Rocha LC, Nascimento VMLd, et al. Evaluation of alpha-1 antitrypsin levels and SERPINA1 gene polymorphisms in sickle cell disease. Front Immunol. 2017;8:1491. https://doi.org/10.3389/fimmu.2017.01491
12. Martinez-Leon E, Osycka-Salut C, Signorelli J, Pozo P, Perez B, Kong M, et al. Fibronectin stimulates human sperm capacitation through the cyclic AMP/protein kinase A pathway. Hum Reprod. 2015;30(9):2138-51. https://doi.org/10.1093/humrep/dev154
13. Davalieva K, Kiprijanovska S, Noveski P, Plaseski T, Kocevska B, Broussard C, et al. Proteomic analysis of seminal plasma in men with different spermatogenic impairment. Andrologia. 2012;44(4):256-64. https://doi.org/10.1111/j.1439-0272.2012.01275.x
14. McIver S, Roman S, Nixon B, McLaughlin E. miRNA and mammalian male germ cells. Hum Reprod Update. 2012;18(1):44-59. https://doi.org/10.1093/humupd/dmr041
15. Li H-G, Huang S-Y, Zhou H, Liao A-H, Xiong C-L. Quick recovery and characterization of cell-free DNA in seminal plasma of normozoospermia and azoospermia: implications for non-invasive genetic utilities. Asian J Androl. 2009;11(6):703. https://doi.org/10.1038/aja.2009.65
16. Wu C, Ding X, Tan H, Li H, Xiong C. Alterations of testis-specific promoter methylation in cell-free seminal deoxyribonucleic acid of idiopathic nonobstructive azoospermic men with different testicular phenotypes. Fertil steril. 2016;106(6):1331-7. https://doi.org/10.1016/j.fertnstert.2016.07.006
17. Grande G, Vincenzoni F, Mancini F, Barrachina F, Giampietro A, Castagnola M, et al. Quantitative analysis of the seminal plasma proteome in secondary hypogonadism. J Clin Med. 2019;8(12):2128. https://doi.org/10.3390/jcm8122128
18. Carpino A, Sisci D, Aquila S, Beraldi E, Sessa M, Siciliano L, et al. Effects of short‐term high‐dose testosterone propionate administration on medium molecular‐weight proteins of human seminal plasma. Andrologia. 1994;26(4):241-5. https://doi.org/10.1111/j.1439-0272.1994.tb00795.x
19. Sheth AR, Jayatilak P, Thakur AN, Mugatwala P, Pardanani D. Effect of administration of a single dose of testosterone oenanthate on constituents of human seminal plasma and serum gonadotropins. Andrologia. 1976;8(3):259-64. https://doi.org/10.1111/j.1439-0272.1976.tb02146.x
20. Bujan L, Mieusset R, Audran F, Lumbroso S, Sultan C. Increased oestradiol level in seminal plasma in infertile men. Hum Reprod. 1993;8(1):74-7. https://doi.org/1093/oxfordjournals.humrep.a137878
21. Zhang Q, Bai Q, Yuan Y, Liu P, Qiao J. Assessment of seminal estradiol and testosterone levels as predictors of human spermatogenesis. J Androl. 2010;31(2):215-20. https://doi.org/10.2164/jandrol.109.007609
22. Andersen J, Herning H, Witczak O, Haugen T. Anti-Müllerian hormone in seminal plasma and serum: association with sperm count and sperm motility. Hum Reprod. 2016;31(8):1662-7. https://doi.org/10.1093/humrep/dew121
23. Caroppo E, Niederberger C, Iacovazzi P, Correale M, Palagiano A, D’Amato G. Human chorionic gonadotropin free β-subunit in the human seminal plasma: a new marker for spermatogenesis? Eur J Obstet Gynecol Reprod Biol. 2003;106(2):165-9. https://doi.org/10.1016/s0301-2115(02)00231-2
24. Weiss G, Goldsmith LT, Schoenfeld C, D'Eletto R. Partial purification of relaxin from human seminal plasma. Am J Obstet Gynecol. 1986;154(4):749-54. https://doi.org/10.1016/0002-9378(86)90448-5
25. Essig M, Schoenfeld C, Amelar RD, Dubin L, Weiss G. Stimulation of human sperm motility by relaxin. Fertil Steril. 1982;38(3):339-43. https://doi.org/10.1016/s0015-0282(16)46516-7
26. Lessing JB, Brenner SH, Schoenfeld C, Goldsmith LT, Amelar RD, Dubin L, et al. The effect of relaxin on the motility of sperm in freshly thawed human semen. Fertil steril. 1985;44(3):406-9. https://doi.org/10.1016/s0015-0282(16)48868-0
27. Brenner SH, Lesing JB, Schoenfeld C, Goldsmith LT, Amelar R, Dubin L, et al. Human semen relaxin and its correlation with the parameters of semen analysis. Fertil steril. 1987;47(4):714-6. https://doi.org/10.1016/s0015-0282(16)59130-4
28. Neuwinger J, Jockenhövel F, Nieschlag E. The influence of relaxin on motility of human sperm in vitro: Der Einfluß des Relaxins auf die Motilität menschlicher Spermatozoen in vitro. Andrologia. 1990;22(4):335-9. https://doi.org/10.1111/j.1439-0272.1990.tb01999.x
29. Seshadri S, Bates M, Vince G, Jones DL. The role of cytokine expression in different subgroups of subfertile men. Am J Reprod Immunol 2009;62(5):275-82. https://doi.org/10.1111/j.1600-0897.2009.00736.x
30. Qian L. Decreased interleukin-11 levels in the semen of infertile males. Cytokine. 2018;108:57-9. https://doi.org/10.1016/j.cyto.2018.03.018
31. Saji F, Ohashi K, Kato M, Negoro T, Tanizawa O. Clinical evaluation of the enzyme-linked immunosorbent assay (ELISA) kit for antisperm antibodies. Fertil steril. 1988;50(4):644-7. https://doi.org/10.1016/s0015-0282(16)60199-1
32. Budnik LT, Jähner D, Mukhopadhyay AK. Inhibitory effects of TNFα on mouse tumor Leydig cells: possible role of ceramide in the mechanism of action. Molecular Cell Endocrinol. 1999;150(1-2):39-46. https://doi.org/10.1016/s0303-7207(99)00029-5
33. Bozhedomov V, Lipatova N, Alexeev R, Alexandrova L, Nikolaeva M, Sukhikh G. The role of the antisperm antibodies in male infertility assessment after microsurgical varicocelectomy. Andrology. 2014;2(6):847-55. https://doi.org/10.1111/j.2047-2927.2014.00254.x
34. Robert M, Gagnon C. Semenogelin I: a coagulum forming, multifunctional seminal vesicle protein. Cell Mol Life Sci. 1999;55(6):944-60. https://doi.org/10.1007/s000180050346
35. Vanage G, Gopalkrishnan K, Sheth A. Effect of antibodies to human seminal plasma inhibin on spermatogenesis and sperm agglutination in adult male rats. Mol Reprod Dev. 1990;25(3):227-36. https://doi.org/10.1002/mrd.1080250304
36. Allouche‐Fitoussi D, Bakhshi D, Breitbart H. Signaling pathways involved in human sperm hyperactivated motility stimulated by Zn2+. Mol Reprod Dev. 2019;86(5):502-15. https://doi.org/10.1002/mrd.23128
37. Kwon W-S, Kim Y-J, Ryu D-Y, Kwon K-J, Song W-H, Rahman MS, et al. Fms-like tyrosine kinase 3 is a key factor of male fertility. Theriogenol. 2019;126:145-52. https://doi.org/10.1016/j.theriogenology.2018.12.019
38. Selvam MKP, Agarwal A, Baskaran S. Proteomic analysis of seminal plasma from bilateral varicocele patients indicates an oxidative state and increased inflammatory response. Asian J Androl. 2019;21(6):544-50. https://doi.org/10.4103/aja.aja_121_18
39. Antoniassi MP, Intasqui P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KH, et al. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int. 2016;118(5):814-22. https://doi.org/10.1111/bju.13539
40. Lu Y, Bhushan S, Tchatalbachev S, Marconi M, Bergmann M, Weidner W, et al. Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis. PLoS One. 2013;8(1):e52919. https://doi.org/10.1371/journal.pone.0052919
41. Boguen R, Treulen F, Uribe P, Villegas JV. Ability of Escherichia coli to produce hemolysis leads to a greater pathogenic effect on human sperm. Fertil Steril. 2015;103(5):1155-61. https://doi.org/10.1016/j.fertnstert.2015.01.044
42. Boguen R, Uribe P, Treulen F, Villegas J. Distinct isolates of uropathogenic E scherichia coli differentially affect human sperm parameters in vitro. Andrologia. 2014;46(8):943-7. https://doi.org/10.1111/and.12167
43. Sharma T, Chauhan A, Thaper D, Rana K, Gupta S, Prabha V. Antifertility effects of sperm impairing factors isolated from bacteria in male mice. J Microbiol Exp. 2017;5(2):1-5. https://doi.org/10.15406/jmen.2017.05.00141
44. Fraczek M, Piasecka M, Gaczarzewicz D, Szumala‐Kakol A, Kazienko A, Lenart S, et al. Membrane stability and mitochondrial activity of human‐ejaculated spermatozoa during in vitro experimental infection with E scherichia coli, S taphylococcus haemolyticus and B acteroides ureolyticus. Andrologia. 2012;44(5):315-29. https://doi.org/10.1111/j.1439-0272.2012.01283.x
45. Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003;115(1):25-35. https://doi.org/10.3410/f.1015760.197953
46. Balmelli T, Stamm J, Dolina‐Giudici M, Peduzzi R, Piffaretti‐Yanez A, Balerna M. Bacterqides ureolyticus in men consulting for infertility. Andrologia. 1994;26(1):35-8. https://doi.org/10.1111/j.1439-0272.1994.tb00751.x
47. Zufferey F, Rahban R, Garcia A, Gagnebin Y, Boccard J, Tonoli D, et al. Steroid profiles in both blood serum and seminal plasma are not correlated and do not reflect sperm quality: Study on the male reproductive health of fifty young Swiss men. Clin Biochem. 2018;62:39-46. https://doi.org/10.1016/j.clinbiochem.2018.03.008
48. Fraczek M, Szumala-Kakol A, Jedrzejczak P, Kamieniczna M, Kurpisz M. Bacteria trigger oxygen radical release and sperm lipid peroxidation in in vitro model of semen inflammation. Fertil Steril. 2007;88(4):1076-85. https://doi.org/10.1016/j.fertnstert.2006.12.025
49. Lewkowicz P, Lewkowicz N, Sasiak A, Tchórzewski H. Lipopolysaccharide-activated CD4+ CD25+ T regulatory cells inhibit neutrophil function and promote their apoptosis and death. J Immunol. 2006;177(10):7155-63. https://doi.org/10.4049/jimmunol.177.10.7155
50. Fraczek M, Szumala-Kakol A, Dworacki G, Sanocka D, Kurpisz M. In vitro reconstruction of inflammatory reaction in human semen: effect on sperm DNA fragmentation. J Reprod Immunol. 2013;100(1):76-85. https://doi.org/10.1016/j.jri.2013.09.005
51. Hosseinzadeh S, Pacey A, Eley A. Chlamydia trachomatis-induced death of human spermatozoa is caused primarily by lipopolysaccharide. Journal Med Microbiol. 2003;52(3):193-200. https://doi.org/10.1099/jmm.0.04836-0
52. Mazzoli S, Cai T, Addonisio P, Bechi A, Mondaini N, Bartoletti R. Chlamydia trachomatis infection is related to poor semen quality in young prostatitis patients. Eur Urol. 2010;57(4):708-14. https://doi.org/10.1016/j.eururo.2009.05.015
53. Veznik Z, Pospisil L, Svecova D, Zajicova A, Unzeitig V. Chlamydiae in the ejaculate: their influence on the quality and morphology of sperm. Acta obstetricia et gynecologica Scandinavica. 2004;83(7):656-60. https://doi.org/10.1080/j.0001-6349.2004.00542.x
54. Cunningham KA, Beagley KW. Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod. 2008;79(2):180-9. https://doi.org/10.1095/biolreprod.108.067835
55. Motrich RD, Cuffini C, Oberti JPM, Maccioni M, Rivero VE. Chlamydia trachomatis occurrence and its impact on sperm quality in chronic prostatitis patients. J Infect. 2006;53(3):175-83. https://doi.org/10.1016/j.jinf.2005.11.007
56. Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biology of reproduction. 1998;59(1):1-6. https://doi.org/10.1095/biolreprod56.3.707
57. de Barsy M, Greub G. Waddlia chondrophila: from biology to pathogenicity. Microbes Infect. 2013;15(14-15):1033-41. https://doi.org/10.1016/j.micinf.2013.09.010
58. Dimitrova D, Kalaydjiev S, Hristov L, Nikolov K, Boyadjiev T, Nakov L. Antichlamydial and antisperm antibodies in patients with chlamydial infections. Am J Reprod Immunol. 2004;52(5):330-6. https://doi.org/10.1111/j.1600-0897.2004.00230.x
59. Witkin S, Kligman I, Bongiovanni A. Relationship between an asymptomatic male genital tract exposure to Chlamydia trachomatis and an autoimmune response to spermatozoa. Hum Reprodu. 1995;10(11):2952-5. https://doi.org/10.1093/oxfordjournals.humrep.a135827
60. Mehta R, Sridhar H, Kumar BV, Kumar TA. High incidence of oligozoospermia and teratozoospermia in human semen infected with the aerobic bacterium Streptococcus faecalis. Reprod Biomed Online. 2002;5(1):17-21. https://doi.org/10.1016/s1472-6483(10)61591-x
61. Rennemeier C, Frambach T, Hennicke F, Dietl J, Staib P. Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. Infect Immun. 2009;77(11):4990-7. https://doi.org/10.1128/iai.00586-09
62. Zdrodowska-Stefanow B, Klosowska W, Ostaszewska-Puchalska I, Bulhak-Koziol V, Kotowicz B. Mycoplasma hominis and Ureaplasma urealyticum infections in male urethritis and its complications. Adv Med Sci. 2006;51:254-7. https://doi.org/10.16899/jcm.1122733
63. Díaz-García FJ, Herrera-Mendoza AP, Giono-Cerezo S, Guerra-Infante FM. Mycoplasma hominis attaches to and locates intracellularly in human spermatozoa. Hum Reprod. 2006;21(6):1591-8. https://doi.org/10.1093/humrep/del032
64. Boulanger J, Faulds D, Eddy E, Lingwood C. Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: Role in gamete recognition and mycoplasma‐related infertility. J Cell Physiol. 1995;165(1):7-17. https://doi.org/10.1002/jcp.1041650103
65. Baldi E, Luconi M, Bonaccorsi L, Krausz C, Forti G. Human sperm activation during capacitation and acrosome reaction: role of calcium, protein phosphorylation and lipid remodelling pathways. Front Biosci. 1996;1(4):125-30. https://doi.org/10.2741/a125
66. Rottem S, Naot Y. Subversion and exploitation of host cells by mycoplasmas. Trends Microbiol. 1998;6(11):436-40. https://doi.org/10.1016/s0966-842x(98)01358-4
67. Zeinali M, Hadian Amree A, Khorramdelazad H, Karami H, Abedinzadeh M. Inflammatory and anti‐inflammatory cytokines in the seminal plasma of infertile men suffering from varicocele. Andrologia. 2017;49(6):e12685. https://doi.org/10.1111/and.12685
68. Swain N, Samanta L, Agarwal A, Kumar S, Dixit A, Gopalan B, et al. Aberrant upregulation of compensatory redox molecular machines may contribute to sperm dysfunction in infertile men with unilateral varicocele: a proteomic insight. Antioxid Redox Signal. 2020;32(8):504-21. https://doi.org/10.1089/ars.2019.7828
69. Liu X, Li Q, Wang W, Liu F. Aberrant expression of sperm-specific glycolytic enzymes are associated with poor sperm quality. Mol Med Rep. 2019;19(4):2471-8. https://doi.org/10.3892/mmr.2019.9926
70. Wu X, Dong Z, Wang CJ, Barlow LJ, Fako V, Serrano MA, et al. FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-κB and SP1. Proc Natl Acad Sci. 2016;113(45):E6965-E73. https://doi.org/10.1073/pnas.1609934113
71. Zhi E-L, Liang G-Q, Li P, Chen H-X, Tian R-H, Xu P, et al. Seminal plasma miR-192a: a biomarker predicting successful resolution of nonobstructive azoospermia following varicocele repair. Asian J Androl. 2018;20(4):396-9. https://doi.org/10.4103/aja.aja_8_18
72. Mostafa T, Rashed LA, Nabil NI, Osman I, Mostafa R, Farag M. Seminal miRNA relationship with apoptotic markers and oxidative stress in infertile men with varicocele. Biomed Res Int 2016;2016(1):4302754. https://doi.org/10.1155/2016/4302754
73. Ferlin A, Menegazzo M, Gianesello L, Selice R, Foresta C. Effect of relaxin on human sperm functions. J Androl. 2012;33(3):474-82. https://doi.org/10.2164/jandrol.110.012625
74. Diemer T, Weidner W, Michelmann H, SCHIEFER HG, Rovan E, Mayer F. Influence of Escherichia coli on motility parameters of human spermatozoa in vitro. Int J Androl. 1996;19(5):271-7. https://doi.org/10.1111/j.1365-2605.1996.tb00475.x
75. Fraczek M, Wiland E, Piasecka M, Boksa M, Gaczarzewicz D, Szumala-Kakol A, et al. Fertilizing potential of ejaculated human spermatozoa during in vitro semen bacterial infection. Fertil Steri. 2014;102(3):711-9. e1. https://doi.org/10.1016/j.fertnstert.2014.06.002
76. Sellami H, Gdoura R, Mabrouk I, Frikha‐Gargouri O, Keskes L, Mallek Z, et al. A proposed mouse model to study male infertility provoked by genital serovar E, Chlamydia trachomatis. J Androl. 2011;32(1):86-94. https://doi.org/10.2164/jandrol.109.009183
77. Rana K, Thaper D, Vander H, Prabha V. Pseudomonas aeruginosa: A risk factor for fertility in male mice. Reprod Biol. 2018;18(4):450-5. https://doi.org/10.1016/j.repbio.2018.08.002
78. Köhn FM, Erdmann I, Oeda T, Mulla KE, Schiefer H, Schill WB. Influence of urogenital infections on sperm functions. Andrologia. 1998;30(S1):73-80. https://doi.org/10.1111/j.1439-0272.1998.tb02829.x
Files
IssueVol 3 No 2 (2025) QRcode
SectionReview Article(s)
Keywords
Seminal plasma Male infertility Biochemical markers Microbial infections

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Hajian H, Mirzaei H, Motallebi M, Shahabodin M. Seminal Plasma Biochemical Markers and Microbial Infections: Diagnostic and Pathophysiological Insights into Male Infertility. ABI. 2025;3(2):62-72.