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ABSTRACT

Prosopis farcta, a medicinal plant of the Fabaceae family, is being explored
scientifically on the basis of its diverse biological activities and medicinal importance.
Rich in flavonoids, alkaloids, and phenolics, P. farcta exhibits strong antioxidant, anti-
inflammatory, antimicrobial, and hepatoprotective activities. It has been demonstrated
that it can exert neuroprotection by modulating oxidative stress and inflammatory
pathways. Further, P. farcta possesses antidiabetic activity through the facilitation of
the insulin sensitivity and glucose metabolism, and hence it is a good candidate for
glycemic control. Its wound healing efficacy via the anti-inflammatory and antimicrobial
activities has been studied through in-vivo and in-vitro models. P. farcta also possesses
cardioprotective activity via lipid metabolism modulation and improvement of
endothelial function. Nevertheless, while P. farcta fruit extracts have hepatoprotective
effects, evidence further suggests the potential for hepatotoxicity with its seed extract,
emphasizing dose-dependent analysis. Despite its therapeutic pharmacological
potential, additional clinical trials must determine its safety profile, define its optimal
therapeutic dosages, and clarify its particular molecular mechanisms of the action. This
review consolidates the current evidence in support of the medicinal worth of P. farcta,
demonstrating its applications in modern medicine.
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Introduction

edicinal plants have been regarded

as the pillars of traditional medicine

since antiquity as a natural reservoir

of bioactive compounds for curative

and preventive purposes of most
diseases. Among them, Prosopis farcta (P. farcta), also
known as mesquite or camel thorn, has been brought
under limelight due to their various biological activities
and therapeutic utilities. A plant that belongs to the
Fabaceae family, the shrub is perennial in nature and is
native to arid and semi-arid regions, including regions
in Africa, Asia, the Middle East, South Asia, and
southern of Iran. It reaches a height of 30 to 100 cm and
seeds are its means of propagation. The plant blooms
between April and June and produces dark brown, oval
leguminous pods. Seeds in the pods, when dehydrated,
produce rattling sounds upon movement, and for this
reason, the plant also has an alternate name of “rattle
tree” or “rattle plant.” P. farcta is highly resilient against
adverse environmental conditions, and its endurance in
dry habitats, coupled with its compact phytochemical
composition, makes it a promising source of new drugs
(Table 1) (1, 2).

The phytochemical compounds of P. farcta include
flavonoids, phenolic acids, alkaloids, and volatile oils
accountable for its multi-directional pharmacological
activities. The antioxidant activity opposes the free
radicals and has a synergistic effect with endogenous
antioxidant enzymes to avert oxidative stress-induced
damage. Anti-inflammatory effects of P. farcta are
achieved through interference with nuclear factor kappa
B (NF-KB)and JAK/STAT signal transduction pathways,
which lead to downregulation of pro-inflammatory
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cytokines (3-7). Its antimicrobial activity, through
phenolic and flavonoid compounds, stifles bacterial and
fungal pathogens with great efficacy, even drug-resistant
ones (2). P. farcta has neuroprotective activity because
it modulates oxidative and inflammatory processes,
preserves neuronal integrity, and perhaps beneficial in
diseases such as Alzheimer’s disease (6, 8-12).

In Persian traditional medicine, the herb has been
utilized to treat theumatism, diabetes, and gastrointestinal
diseases (2, 13). It has recently been substantiated in
literature for its antidiabetic, hepatoprotective, and anti-
inflammatory activities. Metabolically, it corrects lipid
profiles and improves insulin sensitivity, such that it is
seenasacandidate to manage diabetes and hyperlipidemia
(14, 15). This review aims to provide a review of the
biological activities and medicinal properties of P.
farcta, emphasizing the pharmacological modes and
clinical relevance. Through integration of the abundance
of folk wisdom with modern scientific information, we
hope to call attention to the potential applications of this
plant in evidence-based medicine. Finally, incorporation
of P. farcta into modern therapeutic protocols could
contribute to more sustainable, cost-effective, and
accessible healthcare practices, particularly in resource-
limited settings.

Biological activities

P. farcta exhibits a wide range of biological
activities, including antioxidant (16), antibacterial (17),
anticancer (8), and anti-inflammatory effects (5), owing
to its rich content of bioactive phytochemicals. This
plant plays a significant role in combating oxidative
stress by modulating key molecular pathways, including
activation of the nuclear factor erythroid 2-related factor
2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keapl)

Table 1. A brief botanical description of P. farcta

Characteristic Description
Kingdom Plantae
Subkingdom Tracheobionta (Vascular plants)
Super-division Spermatophyta (Seed plants)
Division Magnoliophyta (Flowering plants)
Class Magnoliopsida (Dicotyledons)
Subclass Rosidae
Order Fabales
Family Fabaceae (Leguminosae)
Genus Prosopis
Species Farcta

Common Names
Growth Form

Desert Mesquite, Camel Thorn
Perennial shrub with deep root system

Height Usually, 0.4-1 meter tall
Stems Woody, branched, often spiny
Leaves Bipinnate compound leaves, small leaflets
Flowers Small, yellow to cream-colored, arranged in cylindrical spikes
Fruits Pods (legumes), compressed between seeds, straw-colored to brown
Root System Deep-rooted, can extend several meters into soil
Native Range Western and Central Asia, particularly Iran, Iraq, Syria
Habitat Arid and semi-arid regions, can tolerate saline soils
Ecological Role Nitrogen-fixing capabilities, soil stabilization
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axis and inhibition of NF-xB signaling, enhancing the
activity of antioxidant enzymes [superoxide dismutase
(SOD), glutathione peroxidase (GPX), and catalase
(CAT)], increasing glutathione levels, and reducing
reactive oxygen species (ROS) production (18). The
antibacterial effects of P. farcta are mainly mediated
through disruption of bacterial cell membranes,
inhibition of quorum sensing systems and biofilm
formation, induction of oxidative stress, and suppression
of essential enzymes such as DNA gyrase and RNA
polymerase (19). From an anticancer perspective, P.
farcta demonstrates considerable therapeutic potential
by inducing apoptosis via increasing the Bax/Bcl-2
ratio and activating caspases, causing cell cycle arrest,
inhibiting the PI3K/Akt/mTOR, NF-«xB, and JAK/
STAT3 pathways, exerting a dual regulatory effect on
oxidative stress, suppressing angiogenesis through
downregulation of vascular endothelial growth factor
(VEGF), and preventing cancer cell invasion and
metastasis (20). In addition, P. farcta exhibits notable
anti-inflammatory effects by inhibiting key inflammatory
signaling pathways, reducing the expression of pro-
inflammatory cytokines, suppressing cyclooxygenase
(COX) and Lysyl oxidases (LOX enzymes), modulating
oxidative stress, and potentially inhibiting NLR family
pyrin domain containing 3 (NLRP3) inflammasome
activity (21). Figure 1 depicts the biological effects of
P. farcta.

Therapeutic effects
A summary of the therapeutic effects of P. farcta is
presented in Table 2.

Neuroprotective effects

The neuroprotective action of P. farcta is primarily
ascribed to its ability to modulate oxidative stress
and inflammation both principal contributory factors
to neuronal damage. Luteolin, one of its most well-
documented bioactive molecules, has been found to
possess very high efficacy against oxidative stress-
induced neuronal apoptosis. It has been reported to
block cell death in ischemia-reperfusion injury by
rejuvenating the pro-oxidant/antioxidant ratio (9). This
effect is most pronounced in the hippocampus, where it
induces neurogenesis by upregulating neuronal survival
markers such as neuronal nuclear antigen (NeuN) and
inhibiting apoptotic markers such as doublecortin
(DCX) (3). Moreover, luteolin is shown to protect
against neurons in Alzheimer’s disease models (10, 11).
By decreasing amyloid-beta toxicity, it rescues cognitive
function and memory. Additionally, luteolin controls
critical signaling pathways, for example, cAMP/PKA/
CREB, as well as enhances neurotrophic factors such as
brain-derived neurotrophic factor (BDNF), which plays
a crucial role in neuronal survival as well as in synaptic
plasticity (22, 23).

Recent studies also emphasize that luteolin and
apigenin, among other phytochemicals present in P.
farcta, are responsible for its anti-inflammatory action
by modulating significant pathways like MAPK, STAT3,
NF-kB, and JAK/STAT. These pathways are significant
in the context of neuroinflammatory responses
and the development of disorders like Parkinson’s
and Alzheimer’s disease. In a lipopolysaccharide
(LPS)-stimulated astrocyte experiment, luteolin and
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Figure 1. Schematic overview of the proposed molecular mechanisms by which Prosopis farcta (P. farcta) extract exerts antioxidant,
anti-inflammatory, and anti-apoptotic effects.

(A) P. farcta modulates inflammatory signaling by suppressing TLR-mediated NF-«xB activation, inhibiting IxkB phosphorylation and degradation,
and preventing NF-kB (p65/p50) nuclear translocation, leading to reduced transcription of pro-inflammatory cytokines. (B) Concurrently, under
oxidative stress conditions, P. farcta activates the Nrf2/Keap1 signaling pathway, promoting Nrf2 dissociation from Keapl, nuclear translocation,
and binding to antioxidant response elements (AREs), thereby enhancing the expression of antioxidant defense proteins. (C) In addition, P. farcta
interferes with the JAK/STAT pathway by inhibiting STAT phosphorylation, dimerization, and nuclear translocation, thereby attenuating cytokine-
driven inflammatory gene expression. (D) Furthermore, P. farcta regulates the extrinsic apoptotic pathway, modulating death receptor-mediated
caspase activation and the mitochondrial amplification loop via BID cleavage, BAX/BAK activation, cytochrome c release, apoptosome formation,
and caspase-9 activation. The extract exerts anti-apoptotic effects through the regulation of Bcl-2 family and BH3 proteins, collectively contributing
to cellular protection against oxidative stress, inflammation, and apoptosis.
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Table 2. Therapeutic effects of P. farcta

Thz;?el;i:m Author/years Model Plant Part Formulation/Dosage Result Ref
Mohammadpour S Ischemia- Aerial e P farcta fruit extract o | Oxidative stress
P reperfusion in (150 mg/kg) o 1 Neurogenesis in hippocampus 3)
etal., 2022 : parts > .
mice e Luteolin (30 mg/kg) o | Neuronal apoptosis
Xiong F, and Lv X, REM Sleep Luteolin * PAX (IS5 mglkg) * | NF-«B, NLRP3, ASC, Casp-1
2024 ’ ’ deprivation fraction e Luteolin (10 and 20 o Reversal of anxiety, depressive behaviors 24)
P mg/kg) e Improved hippocampal neuroprotection
Apigenin e | IL-31, IL-33 production
LPS-stimulated and e Apigenin (30 pM) e Prevented astrocyte activation
he D 1., 202! . . .
Che DN et al., 2020 astrocytes luteolin e Luteolin (60 uM) e Blocked NF-kB, STAT3 nuclear translocation “2)
fraction e Modulated NLRP3 inflammasome
Mollashahi M, et Sciatic nerve. Pods, Prosopis farcta (25/50/75 e 1 a-motoneuron density in spinal cord
compression in . . . (43)
al., 2013 rats extracts mg/kg, i.p., 2 times) e Enhanced nerve regeneration
E e Total PFE (100, 200,
st . Morphine and 300 mg/kg) . .
% 12\/([)(12;;yer1 A, etal., withdrawal Seeds o Luteolin fraction (30, ‘.u i} V\i/rllth)drawal symptoms (teeth chattering, @
g model 60, and 90 mg/kg) Jumping
5 e Morphine (50 mg/kg)
Q
z
e Total PFE (100, 200,
Ghasemian- Cannabis . and 300 mg/kg) . e 1 Mature BDNF
Yadegari J. et al withdrawal Aerial *  Luteolin fraction 30, | | Dopami 7
. . pamine
2024 model parts 60, and 90 mg/kg) o Attenuation of withdrawal symptoms
e Melatonin (10 mg/kg)
e THC (10 mg/kg)
o 1 miRNA-132 expression
Neuronal cell Luteolin e Activation of CREB
Lin LF etal., 2012 models (PC12 frl;c tion Luteolin (20 uM) for 2 h e 1 ERK phosphorylation, PKA activity (22)
cells) e Promotion of neurite outgrowth
o 1 Neuronal survival
* /]I;u/tgoli)n (50and 100 1 BDNF expression
mg/xgoay PKA, CREB phosphorylati
PTZ-nduced Luteolin e PTZ(35mgke/day, 1 Onidative o o @)
Zhen JL et al., 2016 Epileptic rats  fraction i.p.) Lo . &e .
o Suppressed seizure induction, duration, severity
e Reversed cognitive impairment
e Fruit extract (400 . . .
Agirman E. etal.,  STZ-induced  Fruitand  mg/kg) : ! i;]r)u [;n insulin, C-peptide levels (25)
2022 diabetic rats seeds e Seed extract (100/400 ! e
e 1 ALT/AST (hepatotoxicity indication)
mg/kg)
. o | Blood glucose
Dashtban M, et al., STZ-induced . . .
5 (;1 ls 6 an M, etal, diabeltrilc ;1;; Bean e 50and 75 mg/kg o No significant effects on lipid profile, hepatic 27)
enzymes
o 1 B-cell viability
Feyzman D, etal., B-TC3 and Various . o | Oxidative stress
2018 HepG2 cells extracts Infusion extract o Improved glucose metabolism (26)
o Modulated glucose diffusion
o High- . .
E Heydari M et al., fructose/STZ- Fruit Hydroalcoholic extract E: iVBngid_(gjlucose’ triglycerides, cholesterol, LDL- (44)
= 2018 induced (100 mg/kg) ’?
b diabetic rats o No adverse effects on healthy controls
é STZ-induced
. cytotoxic - .
Shahbazi B, et al., TC3 cells, Roots Carbohydrate-rich fractions o1 Glucgse c0n§umptlon L. (45)
2020 hepatocyte o Protection against STZ cytotoxicity in f-cells
models
. STZ-induced . S .
Nosrati F, et al., diabetic rats, Aqueous Extract (60 mg/kg) e Outperformed ghbenclam%de in glucose lowering (46)
2020 3T3 L1 cells extract e Improved glucose uptake in 3T3 L1 cells
e | Blood glucose
Alloxan- g o Improved liver function parameters (ALP,
Mohammed et al., induced Roots N-hexane, ethyl acetate, bilirubin) (47)

2020

diabetic rats

methanol extracts
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Continued Table 2. Therapeutic effects of P. farcta

Th:;?e lzzmc Author/years Model Plant Part Formulation/Dosage Result Ref
e | IL-12, TNF-a (inflammatory markers)
. . o | Lipid peroxidation (myeloperoxidase,
Safari et al., 2021 Rat model Fruit 100 mg/kg/day malondialdehyde) (13)
o Attenuated ulcerative colitis-associated wounds
o0 Alharbi K et al., Excision Whole o . e Enhanced wound contraction
-TE 2016 wounded rats  plant 10% methanolic extract o 1 Fibroblast production G0
2 Heidari A et al., . . Root and o 1 Cell proliferation
E 2012 Diabetic rats fruit root powder (40g) « | Inflammation 3D
g In
=
S . vitro/HUVEC  Root and L
z Noroozi et al., 2019 and NHDF cell fruit 1250 g/mL e 1 VEGF-A, FLT1 expression in HUVEC cells (33)
line
Mahmud et al., Human . . . L
2023 fibroblast cell ~ Root 200 ug/mL o 1 Fibroblast proliferation and migration (32)
lines
o Dose-dependent vasodilation via EDHF (epoxy
Rasheed R et al., eicosatrienoic acid)
2019 Goat Root 0.1 mg/ml o | Ca*" influx (35)
o Negative inotropic effects on coronary vessels
Bahrami G et al e | ROS, COX-1, COX-2 enzyme activity
2018 ”  HUVECcells Root 25 pg/mL e | VCAM-1, ICAM-1 mRNA expression (anti- 21)
inflammatory, anti-atherosclerotic)
Saidi MR et al., . e | Total cholesterol, TG, LDL, VLDL, HDL
2016 Rabbits Root 500 mg/kg/day o | Atherosclerosis progression “8)
Bt . qe
TE (2)(;111 12d1 Acetal, Ostriches Beans 30 days supplementation : I EDDI]: (34)
i n vitro (goat ¢ Concentration-dependent relaxation via VGCC
;g Rasheed R et al., clérvolnr; goa Root 0.1 me/ml and K* channels (29)
= 2020 a rtery)ry - me e Mimics metformin properties; targets endothelial-
O derived factors
Asadollahi A etal., In vitro (rat o Dose-dependent, endothelium-dependent
2009 aorta) Root 2 mg/ml relaxation via nitric oxide (non-cholinergic) “9)
Hypertensive/n o 1 Urine flow, Na* excretion, eGFR, urinary
Zana M. Raoof & ormotensive Fruit 50 mg/kg creatinine - e (50)
KD, 2020 rats e | Serum creatinine, urea (mild diuretic,
potassium-sparing-like effect)
Mohammed IH Alloxan- e | Serum glucose, TC, TG, VLDL, LDL, WBC
2020 > induced Root 200 mg/kg count (36)
diabetic rats e 1 RBC, Hb, HCT, HDL levels
o 1 AST, ALT (seed)
Agirman E, etal.,  STZ-induced Fruit and 100 mg/kg bw, 400 mg/kg * L AST, ALT, LDH (fruif)
2022 diabetic rats 54 bw * | MDA, LDH (seed) @5
e 1 GSH, GST, GR, GPx (fruit)
e | SOD, CAT (fruit/seed)
Mohammadpour- Thioacetamide e | AST, ALT, ALP
Zehab et al p2017 -induced acute  Seed 100 mg/kg e | MDA (37)
" liver toxicity e | Liver damage severity, vacuolation
thioacetamide-
Mohammadpour- . ¢ 1 SOD, CAT
induced Seed 100 mg/kg > (15)
Zehab et al., 2018 oxidative stress e | MDA
.. . e | MDA
12{(;1{15nezhad etal, S;g%;t?g?;zd Pod 300 mg/kg ¢ | Inflammation, vacuolation, fat accumulation (38)
© (liver tissue)
= . . e | MDA
§ gaj 12r2)elz ;1 ad M, et g;%;t?g:;t:d Leaves 300 mg/kg e | Inflammation, cellular degeneration (liver 39)
g v tissue)
S Hajinezhad . . e | AST,ALT, ALP
§ Hajinezhad M, et illl%};;f;at Diet Leaves 500 mg/kg e | MDA (40)
== al.,, 2019 e 1 CAT, SOD
. NAFLD-
12((? ls gavam 8, etal, modeled Roots 500 mg/kg * | CPK, LDH, ALT’ AST . . . (51)
rabbits o | Fat droplets, inflammation (liver tissue)
Morovati
Sharifabad M, et Hypercholester Roots 80 mg/kg e | AST, ALT (treatment 90 days) (41)
al. 2017 olemic rats Y
Acetaminophe
Asadollahi K, et al., n-induced e Prevention of AST, ALT increase with extract
2014 Hepatotoxicity Beans 30 mg/kg, 75 mg/kg pretreatment ©2)
in Rats
Tetrachloride- P
Alharbi K, et al., induced Whole 250 * L AST, ALT, ALP, Bilirubin
- mg/kg e | MDA, GST (53)
2017 Hepatotoxicity plant
in Rats e 1 TAC, GSH
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apigenin significantly inhibited the production of pro-
inflammatory cytokines interleukin (IL)-31 and IL-33.
Their ability to inhibit astrocyte activation, interfere
with NF-xB and STAT3 nuclear translocation, and
modulate the NLRP3 inflammasome also speaks to their
neuroprotective properties, delivering a targeted therapy
for chronic neuroinflammation (9, 24).

Experimental studies indicate that the antidiabetic
effects of P. farcta are primarily mediated through the
coordinated regulation of molecular pathways involved
in insulin secretion, insulin sensitivity, and oxidative
balance (25). Fruit and root extracts of this plant
increase insulin and C-peptide levels while reducing
lipid peroxidation markers such as malondialdehyde
(MDA), thereby protecting pancreatic B-cells against
streptozotocin (STZ)-induced damage and improving
their secretory function (25). At the cellular level,
enhanced viability and function of B-TC3 cells, together
with attenuation of oxidative stress, highlight the pivotal
role of P. farcta in preserving B-cell mass and preventing
pancreatic dysfunction (26). Concurrently, certain
extracts selectively target glucose metabolism without
altering hepatic enzyme activity or lipid profiles,
indicating a direct effect on glucose homeostasis;
however, these outcomes are plant-part dependent, as
seed extracts at higher doses have been associated with
adverse hepatic effects (27).

At the molecular level, P. farcta exerts a significant
influence on glucose uptake and utilization by
modulating insulin signaling pathways. Gene expression
analyses reveal upregulation of key insulin signaling
and glucose transport-related genes, including
GLUT?2, phosphoinositide 3-kinase (PI3K), and insulin
receptor substrate 1 (IRS1), alongside downregulation
of glycolytic enzymes such as glucokinase (GK),
phosphofructokinase (PFK), and pyruvate kinase
(PK), collectively contributing to enhanced insulin
sensitivity and optimized glucose metabolism
(28). Moreover, bioactive constituents of the root,
particularly  carbohydrate-rich  fractions, increase
glucose consumption in hepatocytes and exert marked
hepatoprotective and vasculoprotective effects; notably,
in some experimental models, these extracts exhibit
metformin-like activity by ameliorating hyperglycemia-
induced endothelial dysfunction (29). Together,
these findings demonstrate that P. farcta mediates its
antidiabetic effects through an integrated network of
molecular mechanisms encompassing reinforcement of
the insulin signaling, cellular protection, regulation of
oxidative stress, and improvement of metabolic function
in target tissues.

Experimental evidence indicates that the wound-
healing effects of P. farcta are primarily mediated

Acta Biochimica Iranica

through targeted modulation of molecular pathways
involved in inflammation, oxidative stress, angiogenesis,
and cellular proliferation. The bioactive constituents of
this plant, particularly flavonoids, tryptamine-derived
alkaloids, and tannins, create a favorable molecular
microenvironment for tissue repair by inhibiting
microbial growth, ROS production, and modulating
inflammatory responses (30, 31). At the cellular level,
P. farcta controls the inflammatory phase of wound
healing by attenuating lipid peroxidation, suppressing
the expression of pro-inflammatory cytokines such
as IL-1B and tumor necrosis a (TNF-a), reducing
myeloperoxidase activity, and limiting neutrophil
infiltration (32, 33). Concurrently, stimulation of
fibroblast proliferation, increased epithelial thickness,
activation of angiogenesis, and facilitation of
extracellular matrix remodeling, through regulation
of growth factors and redox-dependent signaling
pathways, collectively accelerate wound contraction and
effective tissue regeneration (30). These mechanisms are
particularly pronounced under pathological conditions
such as diabetic wounds, underscoring the pivotal role
of P. farcta in coordinating multiple stages of wound
repair at the molecular level.

Experimental evidence indicates that P. farcta plays a
key role in inhibiting the progression of atherosclerosis
by reducing MDA levels and modulating inflammatory
responses (21). In various animal models, root, fruit,
and leaf extracts of P. farcta have improved plasma
lipid homeostasis by decreasing total cholesterol,
triglycerides, low density lipoprotein cholesterol
(LDL-C), and very low density lipoprotein (VLDL),
while increasing high density lipoprotein cholesterol
(HDL-C) levels, highlighting a direct influence of this
plant on molecular pathways governing lipoprotein
metabolism and oxidative stress (34).

At the vascular level, P. farcta exerts pronounced
vasodilatory effects through complex endothelium-
dependent mechanisms. Root extracts induce relaxation
of coronary arteries and the aorta by blocking L-type
voltage-dependent calcium channels, modulating
calcium influx from intracellular stores, activating
nitric oxide signaling, and engaging endothelium-
derived  hyperpolarizing factors (EDHF) and
epoxyeicosatrienoic acids (EETs) (35). Moreover,
targeting multiple potassium channels (KCa, KATP,
and KIR) and amelioration of hyperglycemia-induced
endothelial dysfunction suggest an overlap between the
vascular molecular mechanisms of P. farcta and those
of agents such as metformin (29). In addition, the mild
potassium-sparing diuretic effects of this plant, through
enhanced glomerular filtration and sodium excretion,
may indirectly contribute to blood pressure regulation
and improved renal function, warranting further detailed
molecular investigations (36).
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P. farcta extracts modulate key pathways involved
in hepatocyte survival, mitigating oxidative damage,
inflammation, and necrosis. Studies in diabetic and
chemically-induced liver injury models demonstrate that
fruit, seed, leaf, and root extracts improve hepatocyte
architecture, restore enzymatic balance (AST, ALT, ALP,
LDH), and reduce oxidative stress-mediated hepatocyte
degeneration, highlighting their capacity to reinforce
cellular defense mechanisms against hepatotoxic insults
(25, 37).

At the cellular and tissue levels, P. farcta influences
multiple hepatoprotective mechanisms, including the
stabilization of hepatocyte membranes, suppression
of inflammatory signaling, and reduction of hepatic
vacuolation and sinusoidal constriction (38). Root and pod
extracts, in particular, have been shown to decrease lipid
accumulation in models of non-alcoholic fatty liver disease
(39, 40), while fruit and leaf extracts restore antioxidant
enzyme activity and improve histopathological features
in hyperlipidemia or chemically-induced hepatic damage
(41). These findings suggest that P. farcta mediates its
protective effects via a network of molecular mechanisms
encompassing antioxidant defense, anti-inflammatory
modulation, and regulation of cellular metabolic and
structural integrity, with distinct plant parts exerting
differential efficacy and safety profiles.

Conclusion

The accumulated evidence suggests that Prosopis
farcta holds significant pharmacological potential
due to its broad spectrum of biological activities.
Its antioxidant and anti-inflammatory properties
contribute to neuroprotection, hepatoprotection, and
cardiovascular health. The plant also demonstrates
promising antidiabetic and wound-healing effects,
making it a valuable candidate for further investigation
in metabolic and inflammatory disorders. However, the
findings regarding P. farcta’s hepatoprotective versus
hepatotoxic effects highlight the complexity of its
bioactive components, necessitating careful evaluation
of its therapeutic dosage and plant part specificity. While
preclinical studies support its efficacy, additional clinical
trials are essential to validate its safety, standardize its
formulations, and explore its potential integration into
conventional medicine. Future research should focus
on elucidating its precise molecular mechanisms,
optimizing its bioavailability, and assessing its long-
term effects in human populations.
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