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Objectives: Learning and memory retention involve a permanent change in behavior 
based on environmental adaptation. Reelin protein plays a role in learning and memory 
but has not been extensively studied in the presence of herbal components. This study 
examines the effect of an optimum dose of beta-boswellic acid (BBA) on reducing tau 
phosphorylation levels and enhancing Reelin expression in the hippocampus to improve 
cognitive behavioral outcomes..

Methods: Spatial memory, learning, and locomotor activity were assessed. Histological 
and Western blot analyses were performed.

Results: The findings demonstrate a significant effect of BBA (35 µg/kg body weight) 
on memory consolidation during the probe trial of the Morris Water Maze (MWM) test. 
BBA treatment reduced the formation of dark neurons in the hippocampus and promoted 
Reelin expression.

Conclusion: A specific dose of BBA enhanced memory consolidation in adult rats, with 
increased Reelin protein expression—likely due to BBA’s anti-inflammatory properties, 
a key factor contributing to improved memory performance.
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	             Introduction

P Fundamental brain functions, including 
learning and memory retention, rely on 
neuronal synaptic activity and the formation 
of neuronal connections (1). Additionally, 
the neocortex and hippocampus play key 

roles in regulating these processes (2). Various medicinal 
plants, such as Boswellia species, have been studied 
for their effects on spatial learning and memory (3, 4). 
Traditionally, Boswellia serrata dry resin extract has 
been used to treat inflammatory diseases and memory 
disorders (5). 

Beta-boswellic acid (BBA) primarily targets 
5-lipoxygenase (5-LOX), which helps reduce the 
concentration of various pro-inflammatory cytokines, 
including leukotriene B₄ (LTB₄) (6). This compound 
has been reported to inhibit human leukocyte elastase 
and topoisomerases I and IIα. Additionally, it can reduce 
PGE₂ formation, leading to decreased inflammation. 
Furthermore, it has been shown to mitigate oxidative 
stress, inflammation, complement activation, and cell 
death in brain endothelial cells exposed to oxygen–
glucose deprivation followed by reperfusion (4, 7). 
BBA also plays a crucial role in brain development 
by facilitating the proper formation of neuronal 
compartments such as dendritic trees and axons (8). It 
effectively promotes hippocampal neurite outgrowth 
and enhances microtubule polymerization (8). The anti-
inflammatory properties of various Boswellia species are 
widely recognized (9, 10). A previous study demonstrated 
that an aqueous extract of Boswellia enhances spatial 
memory, partly through the upregulation of BDNF (11). 
Its neurotrophic effects are mediated via crosstalk with 
the Wnt/β-catenin signaling pathway, with GSK-3β 
serving as the primary factor facilitating this interaction 
(11). Mahboubi et al. investigated the combined 
administration of Melissa officinalis and B. serrata 
extracts in an animal memory model. Their findings 
revealed a significant statistical difference in both time 
spent and distance traveled between the group receiving 
the combined extracts and the scopolamine-treated 
group, suggesting that the combination may enhance 
memory, in alignment with traditional medicinal use 
(12).

Reelin, produced by GABAergic interneurons in the 
adult brain, plays a crucial role in embryonic neuronal 
migration. This secreted glycoprotein is closely 
associated with axons, dendritic spines, and postsynaptic 
density within the cortex and hippocampus, making it 
essential for synaptic plasticity in the mature brain (13). 
Reelin activates numerous neuronal signal transduction 
pathways, which may play a role in modulating synaptic 
plasticity (23). Furthermore, Reelin helps regulate 
neuronal positioning during learning and memory. It 
activates multiple neuronal signal transduction pathways 
in the mature Central Nervous System (CNS), ultimately 

influencing synaptic function and plasticity (14). A 
previous study showed that Reelin levels increased in 
rats treated with beta boswellic acid (25). In the present 
study, we aim to study the role of Reelin expression in 
hippocampal neuronal cells in the presence of boswellic 
acid. Therefore, this study evaluates the effect of an 
optimal dose of boswellic acid on Reelin expression and 
memory consolidation.

Materials and Methods
Reagents

Beta-Boswellic Acid (BBA) was purchased from 
Sigma Chemical Co. (St. Louis, USA) and dissolved 
in 0.05% dimethyl sulfoxide (DMSO). Additionally, 
the monoclonal rabbit anti-β-actin antibody (ab8229, 
Abcam, 1:1000 v/v), anti-Reelin antibody (ab139691, 
Abcam, 1:1000 v/v), and secondary HRP-conjugated 
antibody (ab6721, Abcam, 1:1000 v/v) were 
obtained from Abcam Biotechnology Inc. (USA). 
The chemiluminescent Western blotting detection 
kit and polyvinylidene difluoride (PVDF) membrane 
were provided by Amersham Biosciences (Freiburg, 
Germany). Protease inhibitor cocktail (P8340) and 
phosphatase inhibitor cocktail 3 (P0044) were acquired 
from Sigma-Aldrich. All animal experiments were 
conducted in accordance with the National Institutes 
of Health’s Guide for the Care and Use of Laboratory 
Animals (NIH Publication No. 80-23, revised 1996). 
The study was approved by the Ethics Committee of 
the University of Tehran (ID number: IR.UT.SCIENCE.
REC.1400.005).

Animals
A total of 40 male Wistar rats (250–300 g) were 

obtained from the Pasteur Institute of Iran and housed in 
groups of five per Plexiglas plastic cage under standard 
laboratory conditions (temperature: 22 ± 2˚C; humidity: 
60–65%). They had unrestricted access to food and 
water and were maintained on a 12-hour light/dark cycle 
(lights on at 7:00 a.m.), with testing conducted during 
the light phase (15). Each animal was used only once, 
with 10 rats assigned to each experimental group.

Experimental design
Experimental design After one week of adaptation 

to colony room conditions, 40 rats were randomly 
assigned to four groups (n = 10). The first group, the 
sham group, underwent surgery in each ventricle 
region without treatment. In contrast, the experimental 
groups received bilateral intracerebroventricular (i.c.v.) 
infusion of BBA at doses of 25, 35, and 45 μg/kg body 
weight over four trial days. The injection procedure 
involved filling a 2-μL syringe and loading the pumps 
by inserting the needle into the top hole, followed by 
slow emptying. The subjects were anesthetized via 
intraperitoneal (i.p.) administration of a ketamine and 
xylazine mixture (80 and 100 mg/kg BW, respectively). 
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Stereotaxic coordinates for bilateral i.c.v. injections were 
set at 0.9 mm posterior to the bregma, 1.5 mm lateral to 
the mid-sagittal line, and 3.6 mm beneath the cortical 
surface in the brain (16). Additionally, 2 μL/300 g BW 
(1 μL/ventricle) was injected using a 30-gauge needle 
connected to a Hamilton syringe via a polyethylene 
catheter. Following injection, the needle was kept in 
place for 2 minutes before being slowly withdrawn.

Behavioral tests
Spatial learning and memory capacity in each group 

were assessed using the Morris Water Maze (MWM). 
The tests were conducted between 9.00 am and12 pm.

MWM
Ten minutes after the injections, the rats underwent 

four training trials per day to locate the hidden platform, 
each trial lasting 60 seconds, over four consecutive days. 
Initially, each rat was placed near the pool’s border at a 
designated starting location, facing the wall, and allowed 
to swim until it found the platform. If a rat failed to locate 
the hidden platform within the 60-second limit, it was 
manually guided to the platform, where it remained for 
30 seconds before the next trial began. For each animal, 
three parameters were evaluated: escape latency (time 
taken to find the platform, in seconds), distance swam 
(total distance traveled before reaching the platform, in 
centimeters), and swimming speed (velocity in cm/s). 

A single probe trial was conducted in the pool 
without the platform, during which the time spent in 
the target quadrant was recorded over 60 seconds. 
Specifically, the time and frequency spent in quadrant 
Q3, where the platform had been located during the 
training phase, were measured. These parameters served 
as an index of memory consolidation. On the same 
day that memory consolidation was assessed, a visible 
test was performed to evaluate visual deficiencies and 
motivation for finding the platform. Additionally, a 
computer-based video-tracking system (Ethovision 1.6, 
Noldus, Wageningen) was used to record all behavioral 
functions of the animals (17).

Histological analysis
At the conclusion of the behavioral study, five rats 

were individually placed in a desiccator containing 
cotton and deeply anesthetized with ether before being 
perfused with 4% paraformaldehyde (PFA) (v/v). The 
entire brain was then carefully extracted and preserved 
in 4% PFA (w/v) overnight. Following fixation, the brain 
tissue was embedded in paraffin and sectioned into 5-μm 
slices using a microtome. For each rat, three sections 
were histologically analyzed. All histological samples 
were examined using ImageJ software.

Neuron counting
Nissl staining was used to quantify the percentage 

of pyramidal cell layers in the CA1 and CA3 regions, as 

well as granule cell layers in the dentate gyrus (DG) area 
of the dorsal hippocampus. All samples were examined 
under a Nikon microscope (Nikon H600L, Japan) at 
400× magnification.

Cell volume
The paraffin sections were stained with toluidine 

blue stain and examined under a Nikon microscope at 
400× magnification.

Western blot analysis
Each of the four groups (control and varying doses 

of BBA, n = 5) were sacrificed under CO₂ anesthesia, 
and one hippocampal tissue sample was collected 
from each. The samples were homogenized in three 
volumes of lysis buffer (pH 8) containing 1 mmol/L 
EDTA, 150 mmol/L NaCl, 1% Triton X-100 (v/v), 50 
mmol/L Tris-HCl, 0.1% SDS (v/v), and protease and 
phosphatase inhibitor cocktails (1:100 v/v). Protein 
concentration was determined using the Bradford 
protein assay. The obtained results were based on three 
independent experiments. Hippocampal lysates were 
loaded onto a 12% SDS-PAGE and transferred onto a 
PVDF membrane. The membrane was blocked with 
5% BSA (w/v) in TBS at room temperature for 4 hours, 
followed by overnight incubation at 4°C with primary 
antibodies (anti-β-actin and anti-Reelin, 1:1000 v/v). 
After washing, the membranes were incubated with an 
HRP-conjugated secondary antibody (1:1000 v/v) for 1 
hour at room temperature. Chemiluminescent detection 
was performed using an enhanced chemiluminescence 
(ECL) system, with β-actin normalization in ImageJ 
software.

Statistical analysis
Group interactions were evaluated using repeated 

measurements to determine whether different injection 
doses significantly affected spatial learning or escape 
latency over four consecutive days. Additionally, one-
way ANOVA was used to analyze cell counts, behavioral 
criteria, learning, probe trials, and histological data. The 
effects of dose, time, and dose × time interactions were 
assessed using two-way ANOVA. Tukey’s post-hoc test 
was performed to compare differences between treated 
and control groups. Statistical significance was evaluated 
using GraphPad Prism 7 and SPSS 19 software, with a 
significance threshold set at P < 0.05. All error bars in 
figures represent mean ± standard deviation (SD). Each 
experiment was conducted in triplicate.

Results
BBA improves spatial memory
Acquisition test

Different doses of BBA or control were administered 
to four rat groups to evaluate spatial memory using 
the Morris Water Maze (MWM) over four trial days. 
The results showed a 45% and 57% increase in the 
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distances traveled by rats receiving 25 and 45 μg/kg 
body weight (BW) of BBA, respectively, compared to 
the control group (P = 0.000) (Fig. 1A). Additionally, 
their escape latency increased significantly by 20% and 
23%, respectively, compared to the control (P = 0.025) 
(Fig. 1B). However, there was no significant difference 
between the BBA-treated and control groups in terms of 
swimming speed (P = 0.121) (Fig. 1C). These findings 
suggest that BBA at doses of 25 and 45 μg/kg BW 
enhanced memory retention, whereas the 35 μg/kg BW 
dose did not show a significant effect at this stage.

The treatment with BBA and the control group 
reduced traveled distance and escape latency over 
four consecutive days of training trials. Based on the 
traveled distance results for rats administered BBA at 
25 μg/kg BW, the smallest effect on spatial memory was 
observed on the third and fourth days of the training 
test (P = 0.016). However, a significant difference was 
detected with BBA at a 45 μg/kg BW dose on day 3 (P 

= 0.013) (Fig. 2A). Additionally, the effects on escape 
latency in animals receiving BBA at 45 μg/kg BW 
were significantly different from the control group (P 
= 0.021) (Fig. 2B). The results showed no significant 
difference in swimming speed over the four consecutive 
days (Fig. 2C). All rats reached the threshold criteria 
after four days, and traveled distance and escape latency 
differed significantly between the first and fourth days. 
Throughout the four days, learning capacity declined 
following BBA injection at doses of 25 and 45 μg/kg 
BW.

Probe test
The degree of memory consolidation was evaluated 

using a probe test conducted one day after the acquisition 
test. The probe trial results were analyzed based on 
two parameters: time spent (%) and crossing numbers 
(sec) in the target quadrant. The first parameter showed 
a significant decline (40.4%) in the group exposed 
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Figure 1. Effects of different doses of BBA treatment on training parameters using the Morris Water Maze (MWM) test. These 
parameters included: (A) traveled distance (cm), (B) escape latency (sec), and (c) swimming speed (cm/sec). All error bars in the 
figures represent mean ± SD. Statistical significance was determined as follows based on one-way ANOVA (n = 10 rat/group): ***P 
< 0.001 indicates a significant difference between treated groups (BBA 25 μg/kg and 45 μg/kg of body weight) and the control 
group, while *P < 0.05 indicates a significant difference between treated groups (BBA 25 μg/kg and 45 μg/kg of body weight) and 
the control group. Each group consisted of n = 10 rats.
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Figure 2. Trials were conducted over four consecutive days to assess the effects of BBA treatment using the Morris Water Maze 
(MWM) test. The parameters measured included: (A) mean traveled distance (cm), (B) escape latency (sec), and (C) swimming 
speed (cm/sec) in control and BBA-treated rats. Values are presented as mean ± SD. Statistical significance was determined as 
follows based on two-way ANOVA (n = 10 rat/group): (a) *P < 0.05 indicates a significant difference between Day 3 (BBA 25 μg/
kg and BBA 45 μg/kg of body weight) and the control group, as well as Day 4 (BBA 25 μg/kg of body weight) and the control 
group; (B) a significant difference was observed between Day 4 of BBA 45 μg/kg of body weight and the control group. Data points 
are represented by different symbols: closed star (control), closed square (BBA 25 μg/kg), closed diamond (BBA 35 μg/kg), and 
closed circle (BBA 45 μg/kg).
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to BBA at 25 μg/kg BW compared to the control (P 
= 0.045). In contrast, rats receiving BBA at 35 μg/kg 
BW (P = 0.038) exhibited significantly greater memory 
consolidation (48.6%) than the control. Furthermore, a 
significant difference was observed between the groups 
treated with BBA at 25 and 35 μg/kg BW (P = 0.000), 
as well as between those injected with BBA at 35 and 
45 μg/kg BW (P = 0.006) (Fig. 3A). Regarding crossing 
numbers in the target zone, the rats receiving BBA at 
35 μg/kg BW demonstrated a significant difference 
(54%) compared to the control (P = 0.016). Additionally, 
significant differences were detected between the groups 
administered BBA at 25 and 35 μg/kg BW (P = 0.003), 
as well as between those given BBA at 35 and 45 μg/kg 
BW (P = 0.031) (Fig. 3B). These findings suggest that a 
BBA dose of 35 μg/kg BW is an effective concentration 
for memory retention.

Histological observations
Presence of dark neurons at BBA injected rats

The CA1, CA3, and DG regions of the dorsal 
hippocampus were stained using Nissl reagent and 
dark neuron (DN) markers. Additionally, the ratio of 
dark neurons to their total unstained counterparts was 
determined. Compared to the control group, a significantly 
lower percentage of dark neurons was observed in the 
CA1 and CA3 regions of rats administered BBA at 35 
µg/kg BW (53% and 48%, respectively) (P = 0.048; P 
= 0.033). In contrast, treatment with BBA at doses of 
25 and 45 µg/kg BW did not lead to significant changes 
in neuronal appearance within the CA1, CA3, and DG 
regions (P = 0.252; P = 0.688; P = 0.159, respectively) 
(Fig. 4A). The Nissl reagent was used to stain neuronal 
cells in hippocampal subregions (Fig. 4B). These 
findings suggest that BBA at a dose of 35 µg/kg BW has 
the potential to reduce the number of dark neurons in 

various hippocampal regions.

Changes in the cell volume of the BBA-administrated 
rats

Toluidine blue staining was used to assess the 
mean neuronal volume in the CA1 and CA3 regions of 
the hippocampus in both the BBA-treated and control 
groups. No significant difference in neuronal volume 
was observed between the control group and the group 
receiving BBA at 35 mg/kg body weight (BW) (P = 
0.256). However, administration of BBA at 45 mg/
kg BW led to an increase in neuronal volume by 12% 
in CA1 and 26% in CA3, respectively (P = 0.011; P = 
0.029) (Figs. 5A & B). These results indicate that BBA 
at 35 mg/kg BW did not alter hippocampal neuronal 
volume.

Western blot analysis of different doses of BBA
The modification of Reelin protein levels was 

assessed using Western blot analysis. The analysis 
identified two molecular weights of Reelin protein (410 
and 180 kDa), and results showed significantly higher 
expression in rats exposed to a 35 μg/kg BW dose of 
BBA by 30% and 26%, respectively, compared to the 
control group (P = 0.014; P = 0.26) (Figs. 6A & B). These 
findings confirm that BBA at 35 μg/kg BW significantly 
enhances Reelin protein expression.

Discussion
This study aimed to investigate the optimal dose 

of an herbal agent for enhancing spatial learning and 
memory. Our objective was to provide nonclinical 
evidence for establishing a quantitative dose-dependent 
relationship between BBA concentration in hippocampal 
regions and neurological performance. Previous studies 
administered various doses of BBA via subcutaneous 
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Figure 3. Effects of different doses of BBA treatment in the target quadrant (probe test) using the Morris Water Maze (MWM) 
test. (A) Time spent in the target quadrant (%) and (B) the number of crossings in the target quadrant. Data are presented as mean 
± SD. Statistical significance was determined as follows based on one-way ANOVA (n = 10 rat/group): (a) **P < 0.01 indicates a 
significant difference between BBA 35 μg/kg of body weight and the control group, as well as between BBA 25 μg/kg and BBA 
45 μg/kg groups. ***P < 0.001 indicates a significant difference between BBA 25 μg/kg and BBA 35 μg/kg groups. (b) **P < 0.01 
indicates a significant difference between BBA 35 μg/kg and the control group, as well as between BBA 35 μg/kg and BBA 25 μg/
kg groups. ***P < 0.001 indicates a significant difference between BBA 35 μg/kg and BBA 45 μg/kg groups.
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Figure 4. Neuronal counts and characteristic patterns of brain tissue in the CA1, CA3, and DG regions of the hippocampus using 
Nissl reagent and dark neuron (DN) markers. (A) The percentage of Nissl-stained dark neurons relative to the total neuron count 
in the CA1, CA3, and DG regions. (B) Photomicrographs showing the effects of different doses of BBA treatment compared to the 
control group in the CA1, CA3, and DG regions of the hippocampus. Images were captured at a magnification of ×400. Values are 
presented as mean ± SD. Statistical significance based on one-way ANOVA (n = 5 rat/group): (A) *P < 0.05 indicates a significant 
difference between BBA 35 μg/kg (CA1 and CA3) and the control group. Scale bar: 20 μm.
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Figure 5. Effects of BBA on neurons in the CA1 and CA3 regions of rat hippocampal slices using toluidine blue staining. (A) 
Neuronal cell volume. (B) Photomicrographs showing different doses of BBA treatment compared to the control group in the 
CA1 and CA3 regions of the hippocampus. Images were captured at a magnification of ×400. Values are presented as mean ± SD. 
Statistical significance based on one-way ANOVA (n = 5 rat/group): (A) *P < 0.05 indicates a significant difference between BBA 
45 μg/kg and the control group in both the CA1 and CA3 regions. Scale bar: 20 μm.
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and intraperitoneal (i.p.) injections (18, 19), but since 
BBA undergoes degradation in the liver through these 
routes, we converted these doses to i.c.v. administration. 
The final selected concentrations were 25, 35, and 45 
µg/kg BW. As a result, the low (25 µg/kg) and high (45 
µg/kg) doses of BBA had severely destructive effects, 
whereas the middle dose (35 µg/kg) nearly normalized 
neurodegeneration in the brain. Under these conditions, 
neurobehavioral and neurocognitive parameters, 
including motor coordination, spatial learning, and 
memory ability, showed dose-dependent improvements 
at the optimal dosage. Behavioral, molecular, and 
pathological findings suggest that BBA at an effective 
concentration is significantly associated with enhanced 
learning and memory. In contrast, both higher and lower 
doses than 35 µg/kg BW led to reduced learning ability 
and memory retention. All treated animals exhibited 
greater learning ability and memory, while higher Reelin 
expression was observed specifically with BBA at 35 
µg/kg BW.

According to the literature, Boswellia serrata resin 
influences dendritic density, brain development, and 
various mental and cognitive functions in rats (20). The 
medicinal properties of B. serrata gum resin extract are 
primarily attributed to boswellic acids (21), which inhibit 
5-lipoxygenase (5-LOX) and the nuclear factor kappa-B 
(NF-κB) signaling pathway (22). Among the boswellic 
acid isomers in B. serrata, BBA has been shown to 
promote axonal outgrowth and enhance microtubule 
polymerization dynamics, although its effects on spatial 
learning and memory remain uninvestigated (8, 22).

Boswellic acid derivatives, such as 11-keto-β-
boswellic acid (23) and 3-acetyl-11-keto-β-boswellic 
acid (24), may influence brain function and act as 
bioactive compounds. Previous studies have examined 
these acids under various experimental conditions. 
One study investigated the effects of BBA at three 
concentrations (10, 20, and 30 nM) on hippocampal 
neurite outgrowth and branching in vitro (8). Other 
researchers have explored how different doses of BBA 
affect Reelin expression in human astrocytes (25). To 
evaluate BBA’s direct impact on brain function, i.c.v. 
injections were employed. Additionally, the effective 
dose of BBA on the hippocampal regions of adult 
rats was assessed through behavioral, molecular, and 
histological analyses. Based on the behavioral analysis 
in the present study, BBA at 35 mg/kg body weight 
(BW) did not significantly enhance spatial memory 
during the training phase but was effective during the 
recall phase. In contrast, other doses improved spatial 
memory parameters throughout training. These findings 
suggest that BBA’s efficacy in learning and memory 
retention is concentration-dependent. The 35 mg/kg 
BW dose appeared to enhance memory consolidation, 
possibly through the activation of specific protein 
kinases involved in the Ca²⁺ signaling pathway (26). 
Supporting this, previous studies have demonstrated 

that intracellular Ca²⁺ mobilization can facilitate short-
term memory formation (21, 26). Khalaj-Kondori 
et al. (11) reported that administration of Boswellia 
aqueous extract significantly reduced escape latency 
and travel distance in rats, suggesting enhanced 
spatial memory, a finding consistent with the present 
study. Similarly, Taghizadeh et al. (27) demonstrated 
that treatment with tablets containing B. serrata and 
Melissa officinalis extracts positively affected total 
memory scores and their subscales (27). Mahboubi 
et al. (12) also observed memory improvements in 
an animal model following administration of these 
herbal supplements. The cognitive-enhancing effects 
of B. serrata may be attributed to its influence on 
protein kinase activity, calcium mobilization, and 
associated signaling pathways (12). In the current study, 
administration of BBA at all tested concentrations 
significantly enhanced learning ability and memory 
retention, without impairing motor function or activity. 
All BBA-treated rats successfully located the hidden 
platform during the Morris water maze (MWM) task, 
indicating preserved intellectual function. Additionally, 
pro-inflammatory enzymes implicated in modulating 
learning and memory are present in several herbal 
compounds, including BBA. BBA is known to inhibit 
5-lipoxygenase (5-LO) products such as leukotriene 
B₄ (LTB₄) and 5-hydroxyeicosatetraenoic acid (5-
HETE). Since 5-LO facilitates leukotriene production 
via calcium displacement, free radical formation, cell 
adhesion, and recruitment of inflammatory cells to 
affected tissues, its inhibition may contribute to BBA’s 
neuroprotective and memory-enhancing effects (28).

Histological staining with toluidine blue revealed 
no significant change in the mean volume of neurons 
in the hippocampal regions of rats treated with BBA at 
35 mg/kg body weight (BW). In contrast, other dosage 
groups exhibited significant differences compared to the 
control group. The 35 mg/kg BW dose appears to be the 
most effective concentration, whereas higher or lower 
doses may have induced neurotoxic effects, potentially 
due to osmotic imbalance. In a related study, Hosseini-
Sharifabad et al. (29) reported an increase in the size 
of the pyramidal and radiatum lacunosum-moleculare 
layers in the CA1 region of the hippocampus in aged 
rats following eight weeks of daily B. serrata gum resin 
administration. 

Western blot analysis further supported the cognitive 
benefits of the optimal BBA dose (35 mg/kg BW), 
revealing increased expression of Reelin protein in 
cerebellar granule cells and pyramidal cells of the 
entorhinal cortex (25). Previous research has shown 
that treatment with Reelin enhances expression of the 
scaffold protein 14-3-3 (30–32). Consistent with this, 
the current study identified a marked increase in Reelin 
protein subunits (410 and 180 kDa) in rats administered 
BBA at 35 mg/kg BW, suggesting upregulation of Reelin 
in the hippocampus (30).
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Conclusion
In summary, the findings revealed that BBA (35 mg/kg 

BW) is an effective concentration for memory retention. 
Histological analysis demonstrated the mentioned dose 
has a potential to reduce the number of dark neurons 
in various hippocampal regions. It also significantly 
enhances Reelin protein expression. Therefore, the data 
suggest a potential mechanism through which it may 
enhance memory consolidation, possibly mediated by 
increased Reelin protein expression. The limitations 
of the current study were the comparison between the 
effect of other components of B. serrata gum resin and 
the assess their signaling pathways. However, to support 
the therapeutic application of this herbal compound, 
further clinical studies are essential.
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